⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 conditionalclusterertrainer.java

📁 mallet是自然语言处理、机器学习领域的一个开源项目。
💻 JAVA
字号:
/* Copyright (C) 2002 Dept. of Computer Science, Univ. of Massachusetts, Amherst   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This program toolkit free software; you can redistribute it and/or   modify it under the terms of the GNU General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   This program is distributed in the hope that it will be useful, but   WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  For more   details see the GNU General Public License and the file README-LEGAL.   You should have received a copy of the GNU General Public License   along with this program; if not, write to the Free Software   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA   02111-1307, USA. *//**	 @author Aron Culotta */package edu.umass.cs.mallet.projects.seg_plus_coref.condclust.cluster;import edu.umass.cs.mallet.projects.seg_plus_coref.condclust.pipe.iterator.*;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.pipe.*;import edu.umass.cs.mallet.base.pipe.iterator.*;import edu.umass.cs.mallet.base.classify.*;import java.util.*;  /** Trains the conditional clusterer to predict "yes" or "no" for a * NodeClusterPair; i.e. does this nodes belong in this cluster?*/public class ConditionalClustererTrainer {	Pipe p;	Classifier classifier;	ClassifierTrainer classifierTrainer;	double threshold;		public ConditionalClustererTrainer (Pipe _p, ClassifierTrainer _classifierTrainer, double _threshold) {		this.p = _p;		this.classifierTrainer = _classifierTrainer;		this.threshold = _threshold;	}		public ConditionalClustererTrainer (Pipe _p, ClassifierTrainer _classifierTrainer) {		this (_p, _classifierTrainer, 0.0);	}	public ConditionalClustererTrainer (Pipe _p, double _threshold) {		this (_p, new MaxEntTrainer(), _threshold);	}	public ConditionalClustererTrainer (Pipe _p) { this(_p, new MaxEntTrainer());}		public ConditionalClusterer train (AbstractPipeInputIterator instanceIterator, boolean useFeatureInduction) {		InstanceList trainingList = new InstanceList (p);		trainingList.add (instanceIterator);		System.err.println ("Training on " + trainingList.size() + " instances with distribution " +												trainingList.targetLabelDistribution() + " and " + trainingList.getPipe().getDataAlphabet().size() +												" features");;		InfoGain ig = new InfoGain (trainingList);		for (int i=0; i < ig.numLocations(); i++)			System.err.println ("InfoGain["+ig.getObjectAtRank(i)+"]="+ig.getValueAtRank(i));		if (useFeatureInduction) {			System.err.println ("Beginning Feature Induction");			RankedFeatureVector.Factory gainFactory = new InfoGain.Factory();	    FeatureInducer fi = new FeatureInducer (gainFactory,																							trainingList, 20);	    fi.induceFeaturesFor(trainingList, false, false);		}		classifier = classifierTrainer.train (trainingList);		classifier.getInstancePipe().getDataAlphabet().stopGrowth();		return new ConditionalClusterer(p, classifier, threshold);	}		public ConditionalClusterer train (Collection trainingCluster, boolean useFeatureInduction,																		 boolean generateSampledInstances,																		 double positiveInstanceRatio, int numberTrainingInstances) {		return train (new NodeClusterPairIterator (trainingCluster, new Random(1),																				positiveInstanceRatio, generateSampledInstances,																				numberTrainingInstances), useFeatureInduction);	}	private LabelVector[] getLabelVectors (ArrayList classifications) {		LabelVector[] lvs = new LabelVector[classifications.size()];		for (int i=0; i < classifications.size(); i++) 			lvs[i] = ((Classification)classifications.get(i)).getLabelVector();		return lvs;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -