⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 closestsinglelink.java

📁 mallet是自然语言处理、机器学习领域的一个开源项目。
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.projects.seg_plus_coref.condclust.pipe;import edu.umass.cs.mallet.projects.seg_plus_coref.condclust.types.*;import edu.umass.cs.mallet.projects.seg_plus_coref.coreference.*;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.*;import edu.umass.cs.mallet.base.classify.*;import edu.umass.cs.mallet.base.pipe.*;import java.util.*;/** Feature is similarity between node and closest node in cluster, as * determined by the classifier*/public class ClosestSingleLink extends Pipe{	/** Determines distance between two nodes*/	Classifier classifier;	/** True if we should include the features from the closest NodePair */	boolean includePairwiseFeatures;		public ClosestSingleLink (Classifier _classifier, boolean _includePairwiseFeatures)	{		this.classifier = _classifier;		this.includePairwiseFeatures = _includePairwiseFeatures;	}	public ClosestSingleLink (Classifier _classifier) {		this (_classifier, true);	}		public Instance pipe (Instance carrier) {		NodeClusterPair pair = (NodeClusterPair)carrier.getData();		Citation node = (Citation)pair.getNode();		Collection cluster = (Collection)pair.getCluster();		Iterator iter = cluster.iterator ();		double maxVal = -99999999.9;		NodePair closestPair = null;		while (iter.hasNext()) {			Citation c = (Citation) iter.next();			NodePair np = new NodePair (c, node);			Instance inst = new Instance (np, "unknown", null, np, classifier.getInstancePipe());			Classification classification = classifier.classify (inst);			Labeling labeling = classification.getLabeling();			double val = 0.0;			if (labeling.labelAtLocation(0).toString().equals("no")) 				val =  labeling.valueAtLocation(1)-labeling.valueAtLocation(0);			else 				val =  labeling.valueAtLocation(0)-labeling.valueAtLocation(1);			if (val > maxVal) {				maxVal = val;				closestPair = np;			}		}		if (maxVal > 0.9)			pair.setFeatureValue ("ClosestNodeSimilarityHigh", 1.0);		else if (maxVal > 0.75)			pair.setFeatureValue ("ClosestNodeSimilarityMed", 1.0);		else if (maxVal > 0.5)			pair.setFeatureValue ("ClosestNodeSimilarityWeak", 1.0);		else if (maxVal > 0.3)			pair.setFeatureValue ("ClosestNodeSimilarityMin", 1.0);		else			pair.setFeatureValue ("ClosestNodeSimilarityNone", 1.0);		// add features from closest NodePair		if (includePairwiseFeatures && closestPair != null) {			PropertyList.Iterator pliter = closestPair.getFeatures().iterator();			while (pliter.hasNext()) {				pliter.next();				double v = pliter.getNumericValue();				String key = pliter.getKey().toString();				key = "ClosestNodeFeature_" + key;				pair.setFeatureValue (key, v);			}		} 		return carrier;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -