⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 alllinks.java

📁 mallet是自然语言处理、机器学习领域的一个开源项目。
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.projects.seg_plus_coref.condclust.pipe;import edu.umass.cs.mallet.projects.seg_plus_coref.condclust.types.*;import edu.umass.cs.mallet.projects.seg_plus_coref.coreference.*;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.*;import edu.umass.cs.mallet.base.classify.*;import edu.umass.cs.mallet.base.pipe.*;import java.util.*;/** Subsumes ClosestSingleLink, AverageLink, FarthestLink to save computation */public class AllLinks extends Pipe{	/** Determines distance between two nodes*/	Classifier classifier;	/** True if we should include the features from the closest/farthest NodePair */	boolean includePairwiseFeatures;	/** How many negative links we need to see b/t node and cluster for	 * feature to fire */	int minNumNeg;		public AllLinks (Classifier _classifier, boolean _includePairwiseFeatures, int n)	{		this.classifier = _classifier;		this.includePairwiseFeatures = _includePairwiseFeatures;		this.minNumNeg = n;	}	public AllLinks (Classifier _classifier, boolean _includePairwiseFeatures)	{		this (_classifier, _includePairwiseFeatures, 1);	}	public AllLinks (Classifier _classifier) {		this (_classifier, true);	}		public Instance pipe (Instance carrier) {		NodeClusterPair pair = (NodeClusterPair)carrier.getData();		Citation node = (Citation)pair.getNode();		Collection cluster = (Collection)pair.getCluster();		Iterator iter = cluster.iterator ();		double maxVal = -99999999.9;		double minVal = 99999999.9;		double total = 0.0;		NodePair closestPair = null;		NodePair farthestPair = null;		int numNeg = 0;		while (iter.hasNext()) {			Citation c = (Citation) iter.next();			NodePair np = new NodePair (c, node);			Instance inst = new Instance (np, "unknown", null, np, classifier.getInstancePipe());			Classification classification = classifier.classify (inst);			Labeling labeling = classification.getLabeling();			double val = 0.0;			if (labeling.labelAtLocation(0).toString().equals("no")) {				val =  labeling.valueAtLocation(1)-labeling.valueAtLocation(0);				numNeg++;			}			else 				val =  labeling.valueAtLocation(0)-labeling.valueAtLocation(1);			if (val > maxVal) {				maxVal = val;				closestPair = np;			}			if (val < minVal) {				minVal = val;				farthestPair = np;			}			total += val;		}		// add NNegativeNodes feature		if (numNeg >= minNumNeg)			pair.setFeatureValue ("ClusterContainsAtLeast"+minNumNeg+"NegativeNodes", 1.0);				// add features from closest NodePair		if (maxVal > 0.9)			pair.setFeatureValue ("ClosestNodeSimilarityHigh", 1.0);		else if (maxVal > 0.75)			pair.setFeatureValue ("ClosestNodeSimilarityMed", 1.0);		else if (maxVal > 0.5)			pair.setFeatureValue ("ClosestNodeSimilarityWeak", 1.0);		else if (maxVal > 0.3)			pair.setFeatureValue ("ClosestNodeSimilarityMin", 1.0);		else			pair.setFeatureValue ("ClosestNodeSimilarityNone", 1.0);				if (includePairwiseFeatures && closestPair != null) {			PropertyList.Iterator pliter = closestPair.getFeatures().iterator();			while (pliter.hasNext()) {				pliter.next();				double v = pliter.getNumericValue();				String key = pliter.getKey().toString();				key = "ClosestNodeFeature_" + key;				pair.setFeatureValue (key, v);			}		}		// add features from farthest NodePair		if (minVal > 0.9)			pair.setFeatureValue ("FarthestNodeSimilarityHigh", 1.0);		else if (minVal > 0.75)			pair.setFeatureValue ("FarthestNodeSimilarityMed", 1.0);		else if (minVal > 0.5)			pair.setFeatureValue ("FarthestNodeSimilarityWeak", 1.0);		else if (minVal > 0.3)			pair.setFeatureValue ("FarthestNodeSimilarityMin", 1.0);		else			pair.setFeatureValue ("FarthestNodeSimilarityNone", 1.0);		if (includePairwiseFeatures && farthestPair != null) {			PropertyList.Iterator pliter = farthestPair.getFeatures().iterator();			while (pliter.hasNext()) {				pliter.next();				double v = pliter.getNumericValue();				String key = pliter.getKey().toString();				key = "FarthestNodeFeature_" + key;				pair.setFeatureValue (key, v);			}		}		// add features from average similarity		double average = total / (double)cluster.size();		if (average > 0.9)			pair.setFeatureValue ("AverageNodeSimilarityHigh", 1.0);		else if (average > 0.75)			pair.setFeatureValue ("AverageNodeSimilarityMed", 1.0);		else if (average > 0.5)			pair.setFeatureValue ("AverageNodeSimilarityWeak", 1.0);		else if (average > 0.3)			pair.setFeatureValue ("AverageNodeSimilarityMin", 1.0);		else			pair.setFeatureValue ("AverageNodeSimilarityNone", 1.0);				 		return carrier;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -