📄 alllinks.java
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.projects.seg_plus_coref.condclust.pipe;import edu.umass.cs.mallet.projects.seg_plus_coref.condclust.types.*;import edu.umass.cs.mallet.projects.seg_plus_coref.coreference.*;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.*;import edu.umass.cs.mallet.base.classify.*;import edu.umass.cs.mallet.base.pipe.*;import java.util.*;/** Subsumes ClosestSingleLink, AverageLink, FarthestLink to save computation */public class AllLinks extends Pipe{ /** Determines distance between two nodes*/ Classifier classifier; /** True if we should include the features from the closest/farthest NodePair */ boolean includePairwiseFeatures; /** How many negative links we need to see b/t node and cluster for * feature to fire */ int minNumNeg; public AllLinks (Classifier _classifier, boolean _includePairwiseFeatures, int n) { this.classifier = _classifier; this.includePairwiseFeatures = _includePairwiseFeatures; this.minNumNeg = n; } public AllLinks (Classifier _classifier, boolean _includePairwiseFeatures) { this (_classifier, _includePairwiseFeatures, 1); } public AllLinks (Classifier _classifier) { this (_classifier, true); } public Instance pipe (Instance carrier) { NodeClusterPair pair = (NodeClusterPair)carrier.getData(); Citation node = (Citation)pair.getNode(); Collection cluster = (Collection)pair.getCluster(); Iterator iter = cluster.iterator (); double maxVal = -99999999.9; double minVal = 99999999.9; double total = 0.0; NodePair closestPair = null; NodePair farthestPair = null; int numNeg = 0; while (iter.hasNext()) { Citation c = (Citation) iter.next(); NodePair np = new NodePair (c, node); Instance inst = new Instance (np, "unknown", null, np, classifier.getInstancePipe()); Classification classification = classifier.classify (inst); Labeling labeling = classification.getLabeling(); double val = 0.0; if (labeling.labelAtLocation(0).toString().equals("no")) { val = labeling.valueAtLocation(1)-labeling.valueAtLocation(0); numNeg++; } else val = labeling.valueAtLocation(0)-labeling.valueAtLocation(1); if (val > maxVal) { maxVal = val; closestPair = np; } if (val < minVal) { minVal = val; farthestPair = np; } total += val; } // add NNegativeNodes feature if (numNeg >= minNumNeg) pair.setFeatureValue ("ClusterContainsAtLeast"+minNumNeg+"NegativeNodes", 1.0); // add features from closest NodePair if (maxVal > 0.9) pair.setFeatureValue ("ClosestNodeSimilarityHigh", 1.0); else if (maxVal > 0.75) pair.setFeatureValue ("ClosestNodeSimilarityMed", 1.0); else if (maxVal > 0.5) pair.setFeatureValue ("ClosestNodeSimilarityWeak", 1.0); else if (maxVal > 0.3) pair.setFeatureValue ("ClosestNodeSimilarityMin", 1.0); else pair.setFeatureValue ("ClosestNodeSimilarityNone", 1.0); if (includePairwiseFeatures && closestPair != null) { PropertyList.Iterator pliter = closestPair.getFeatures().iterator(); while (pliter.hasNext()) { pliter.next(); double v = pliter.getNumericValue(); String key = pliter.getKey().toString(); key = "ClosestNodeFeature_" + key; pair.setFeatureValue (key, v); } } // add features from farthest NodePair if (minVal > 0.9) pair.setFeatureValue ("FarthestNodeSimilarityHigh", 1.0); else if (minVal > 0.75) pair.setFeatureValue ("FarthestNodeSimilarityMed", 1.0); else if (minVal > 0.5) pair.setFeatureValue ("FarthestNodeSimilarityWeak", 1.0); else if (minVal > 0.3) pair.setFeatureValue ("FarthestNodeSimilarityMin", 1.0); else pair.setFeatureValue ("FarthestNodeSimilarityNone", 1.0); if (includePairwiseFeatures && farthestPair != null) { PropertyList.Iterator pliter = farthestPair.getFeatures().iterator(); while (pliter.hasNext()) { pliter.next(); double v = pliter.getNumericValue(); String key = pliter.getKey().toString(); key = "FarthestNodeFeature_" + key; pair.setFeatureValue (key, v); } } // add features from average similarity double average = total / (double)cluster.size(); if (average > 0.9) pair.setFeatureValue ("AverageNodeSimilarityHigh", 1.0); else if (average > 0.75) pair.setFeatureValue ("AverageNodeSimilarityMed", 1.0); else if (average > 0.5) pair.setFeatureValue ("AverageNodeSimilarityWeak", 1.0); else if (average > 0.3) pair.setFeatureValue ("AverageNodeSimilarityMin", 1.0); else pair.setFeatureValue ("AverageNodeSimilarityNone", 1.0); return carrier; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -