📄 ieinterface.java
字号:
instance_accuracy_nbest = new double[N]; viterbiP_NBest = crf.viterbiPath_NBest((Sequence)instance.getData(), N);//n-best list Sequence[] nbestlist = viterbiP_NBest.outputNBest(); // print all N candidates for(int i=0; i<nbestlist.length; i++) { viterbiSequence = nbestlist[i]; str += "\n" + i + ": cost=" + (viterbiP_NBest.costNBest())[i] + " : viterbicost=" + viterbiP_NBest.getCost() + " ";// double tempW = viterbiP_NBest.costNBest()[i] - viterbiP_NBest.costNBest()[0];// double weight = Math.exp(-tempW); double confidence = viterbiP_NBest.confidenceNBest()[i]; str += " confidene=" + confidence + " "; instance_accuracy_nbest[i]= InstanceAccuracy(viterbiSequence, (Sequence)instance.getTarget(), instance);// System.out.println(instance_accuracy_nbest[i]); str += instance_accuracy_nbest[i] + "\n"; str += printResultInFormat(sgml); } // print only the Nth candidate// viterbiSequence = nbestlist[N-1];// str += printResultInFormat(sgml); // use the combined results // viterbiSequence = crf.combineNBest_fieldLevel(instance, viterbiP_NBest, null, null);// viterbiSequence = crf.combineNBest_fieldLevel2(instance, N, 99);// viterbiSequence = crf.combineNBest_fieldLevel3(instance, N, 99);// str += "\ncombined result\n"; // str += InstanceAccuracy(viterbiSequence, (Sequence)instance.getTarget(), instance) + " \n"; // str += printResultInFormat(sgml); return str; } //given an input file, label it, and output in the format of inline SGML public void viterbiCRF(File inputFile, boolean sgml, String seperator) { assert(pipe!= null); InstanceList instancelist = new InstanceList (pipe); Reader reader; try { reader = new FileReader (inputFile); } catch (Exception e) { throw new IllegalArgumentException ("Can't read file "+inputFile); } instancelist.add (new LineGroupIterator (reader, Pattern.compile(seperator), true)); String outputFileStr = inputFile.toString() + "_tagged"; System.out.println(inputFile.toString() + " ---> " + outputFileStr); PrintStream taggedOut = null; try{ FileOutputStream fos = new FileOutputStream (outputFileStr); taggedOut = new PrintStream (fos); } catch (IOException e) { logger.warning ("Couldn't open output file '"+ outputFileStr+"'"); } if(taggedOut == null){ taggedOut = System.out; } String viterbiStr = "";// taggedOut.println("testing instance number: " + instancelist.size() ); for(int i=0; i<instancelist.size(); i++){// taggedOut.println("\ntesting instance " + i); Instance instance = instancelist.getInstance(i); String crfStr = viterbiCRFInstance(instance,sgml); taggedOut.println(seperator); taggedOut.println(" instance accuracy= " + instance_error_num + "/" + instance_size + "=" + instance_accuracy); taggedOut.println(crfStr); viterbiStr += crfStr; //N-best tagging int N = 10; crfStr = viterbiCRFInstance_NBest(instance,sgml, N); taggedOut.println("N-best result:"); taggedOut.println(seperator); taggedOut.println(crfStr); viterbiStr += crfStr; } if(taggedOut != System.out){ taggedOut.close(); } } //viterbi for all files under a given directory, //if the given directory is a plain file, viterbi for this file public void viterbiCRF(String inputDir, boolean sgml, String seperator) { // if inputDir is a plain file File file = new File(inputDir); if( file.isFile() ){ viterbiCRF(file, sgml, seperator); } else{ // continue if it is a directory FileIterator fileIter = new FileIterator (inputDir); ArrayList fileList = fileIter.getFileArray(); for(int i=0; i<fileList.size(); i++){ file = (File) fileList.get(i); viterbiCRF(file, sgml, seperator); } } } public void viterbiCRF(String inputDir) { viterbiCRF(inputDir, true); } public void viterbiCRF(String inputDir, boolean sgml) { viterbiCRF(inputDir, sgml, seperator); } // cumulative evaluation for N-best list public void cumulativeEvaluate_InstanceLevel(File inputFile, String seperator, int N) { assert(pipe!= null); InstanceList instancelist = new InstanceList (pipe); Reader reader; try { reader = new FileReader (inputFile); } catch (Exception e) { throw new IllegalArgumentException ("Can't read file "+inputFile); } instancelist.add (new LineGroupIterator (reader, Pattern.compile(seperator), true)); Alphabet targets = (this.pipe).getTargetAlphabet(); assert(targets != null); int numCorrectTokens = 0, totalTokens = 0; int[] numTrueSegments, numPredictedSegments, numCorrectSegments; int[] numCorrectSegmentsInVocabulary, numCorrectSegmentsOOV; int[] numIncorrectSegmentsInVocabulary, numIncorrectSegmentsOOV; int[][] matrixEntry; int numCorrectWholeInstance = 0; numTrueSegments = new int[targets.size()]; numPredictedSegments = new int[targets.size()]; numCorrectSegments = new int[targets.size()]; matrixEntry = new int[targets.size()][targets.size()];// String PUNT = "[,\\.;:?!()*]";// Pattern puntPattern = Pattern.compile(PUNT); for(int i=0; i<instancelist.size(); i++){ Instance instance = instancelist.getInstance(i); //N-best tagging viterbiP_NBest = crf.viterbiPath_NBest((Sequence)instance.getData(), N);//n-best list Sequence[] nbestlist = viterbiP_NBest.outputNBest(); instance_accuracy_nbest = new double[N];// System.out.println(nbestlist.length); for(int k=0; k<nbestlist.length; k++) { Sequence tempViterbiSequence = nbestlist[k]; instance_accuracy_nbest[k]= InstanceAccuracy(tempViterbiSequence, (Sequence)instance.getTarget(), instance); } int optimalIndex = 0; for(int k=1; k<nbestlist.length; k++){// System.out.println(i + " : " + k + " : " + instance_accuracy_nbest[k]); if(instance_accuracy_nbest[k] > instance_accuracy_nbest[optimalIndex]) { optimalIndex = k; // System.out.println(optimalIndex + " : " + instance_accuracy_nbest[k]); } }// System.out.println(optimalIndex + "/" + nbestlist.length + " : " + instance_accuracy_nbest[optimalIndex]); boolean wholeInstanceCorrect = true; Sequence trueSequence = (Sequence)instance.getTarget(); tokenSequence = (TokenSequence)instance.getSource(); for (int j = 0; j < trueSequence.size(); j++) { String tokenStr = tokenSequence.getToken(j).getText(); if(puntPattern.matcher(tokenStr).matches() && ignorePunct ){//ignore punct; continue; } totalTokens ++; Object trueO = trueSequence.get(j); // String trueO = trueSequence.get(j).toString(); int trueIndex = targets.lookupIndex(trueO); numTrueSegments[trueIndex] ++; int predIndex = 0; Object predO = nbestlist[optimalIndex].get(j); // String predO = nbestlist[optimalIndex].get(j).toString(); predIndex = targets.lookupIndex(predO); numPredictedSegments[predIndex] ++; matrixEntry[trueIndex][predIndex] ++; if(predIndex == trueIndex){ numCorrectTokens ++; numCorrectSegments[trueIndex] ++; } else{ wholeInstanceCorrect = false; } } if(wholeInstanceCorrect) numCorrectWholeInstance ++; } System.out.println("\n\nAlways select the best instance evalutation results: N = " + N); double macro_average_p=0; double macro_average_r=0; double macro_average_f=0; double micro_average_p=0; double micro_average_r=0; double micro_average_f=0; int micro_numCorrectSegments = 0; int micro_numPredictedSegments = 0; int micro_numTrueSegments = 0; int classNum=0; for(int t=0; t<targets.size(); t++){ double precision = numPredictedSegments[t] == 0 ? 1 : ((double)numCorrectSegments[t]) / numPredictedSegments[t]; double recall = numTrueSegments[t] == 0 ? 1 : ((double)numCorrectSegments[t]) / numTrueSegments[t]; double f1 = recall+precision == 0.0 ? 0.0 : (2.0 * recall * precision) / (recall + precision); double accuracy_individual = (double)(totalTokens-numPredictedSegments[t]-numTrueSegments[t] + 2*numCorrectSegments[t] )/totalTokens; System.out.println (targets.lookupObject(t) + " precision="+precision+" recall="+recall+" f1="+f1 + " accuracy=" + accuracy_individual); System.out.println ("segments true="+numTrueSegments[t]+" pred="+numPredictedSegments[t]+" correct="+numCorrectSegments[t]+" misses="+(numTrueSegments[t]-numCorrectSegments[t])+" alarms="+(numPredictedSegments[t]-numCorrectSegments[t]) + "\n"); if(!targets.lookupObject(t).equals("O")){ classNum++; macro_average_p += precision; macro_average_r += recall; macro_average_f += f1; micro_numCorrectSegments += numCorrectSegments[t]; micro_numPredictedSegments += numPredictedSegments[t]; micro_numTrueSegments += numTrueSegments[t]; } } micro_average_p = (double)micro_numCorrectSegments/micro_numPredictedSegments; micro_average_r = (double)micro_numCorrectSegments/micro_numTrueSegments; micro_average_f = micro_average_r + micro_average_p == 0.0 ? 0.0 : (2.0 * micro_average_r * micro_average_p) / (micro_average_r + micro_average_p); macro_average_p /= classNum; macro_average_r /= classNum; macro_average_f /= classNum; System.out.println("\n Confusion Matrix (row: true label, col: predicted label)"); System.out.print("\t"); for(int t=0; t<targets.size(); t++){ System.out.print(targets.lookupObject(t) + "\t"); } System.out.println(); for(int t=0; t< targets.size(); t++){ System.out.print(targets.lookupObject(t)+"\t"); for(int tt=0; tt<targets.size(); tt++){ System.out.print(matrixEntry[t][tt] + "\t"); } System.out.println(); } // print out the overall performance double accuracy = (double)numCorrectTokens/totalTokens; System.out.println ("\n" +" accuracy=" + numCorrectTokens +"/"+ totalTokens + " = " +accuracy); double wholeInstanceAccuracy = (double)numCorrectWholeInstance/instancelist.size(); System.out.println ("Whole instance accuracy = " + numCorrectWholeInstance + "/" + instancelist.size() + " = " + wholeInstanceAccuracy); System.out.println("\nMacro Average"); System.out.println("macro precision : " + macro_average_p); System.out.println("macro recall: " + macro_average_r); System.out.println("macro f : " + macro_average_f); System.out.println("\nMicro Average"); System.out.println("micro precision : " + micro_average_p); System.out.println("micro recall: " + micro_average_r); System.out.println("micro f : " + micro_average_f);/* double accuracy = (double)numCorrectTokens/totalTokens; System.out.println ("\n" +" accuracy=" + numCorrectTokens +"/"+ totalTokens + " = " +accuracy); double wholeInstanceAccuracy = (double)numCorrectWholeInstance/instancelist.size(); System.out.println ("Whole instance accuracy = " + numCorrectWholeInstance + "/" + instancelist.size() + " = " + wholeInstanceAccuracy); for(int t=0; t<targets.size(); t++){ double precision = numPredictedSegments[t] == 0 ? 1 : ((double)numCorrectSegments[t]) / numPredictedSegments[t]; double recall = numTrueSegments[t] == 0 ? 1 : ((double)numCorrectSegments[t]) / numTrueSegments[t]; double f1 = recall+precision == 0.0 ? 0.0 : (2.0 * recall * precision) / (recall + precision); double accuracy_individual = (double)(totalTokens-numPredictedSegments[t]-numTrueSegments[t] + 2*numCorrectSegments[t] )/totalTokens; System.out.println (targets.lookupObject(t) + " precision="+precision+" recall="+recall+" f1="+f1 + " accuracy=" + accuracy_individual); System.out.println ("segments true="+numTrueSegments[t]+" pred="+numPredictedSegments[t]+" correct="+numCorrectSegments[t]+" misses="+(numTrueSegments[t]-numCorrectSegments[t])+" alarms="+(numPredictedSegments[t]-numCorrectSegments[t]) + "\n"); } System.out.println(); for(int t=0; t< targets.size(); t++){ System.out.print(targets.lookupObject(t)+"\t"); for(int tt=0; tt<targets.size(); tt++){ System.out.print(matrixEntry[t][tt] + "\t"); } System.out.println(); }*/ } // cumulative evaluation for N-best list public void cumulativeEvaluate_TokenLevel(File inputFile, String seperator, int N) { assert(pipe!= null); InstanceList instancelist = new InstanceList (pipe); Reader reader; try { reader = new FileReader (inputFile); } catch (Exception e) { throw new IllegalArgumentException ("Can't read file "+inputFile); } instancelist.add (new LineGroupIterator (reader, Pattern.compile(seperator), true)); Alphabet targets = (this.pipe).getTargetAlphabet(); assert(targets != null); int numCorrectTokens = 0, totalTokens = 0; int[] numTrueSegments, numPredictedSegments, numCorrectSegments; int[] numCorrectSegmentsInVocabulary, numCorrectSegmentsOOV; int[] numIncorrectSegmentsInVocabulary, numIncorrectSegmentsOOV; int[][] matrixEntry; int numCorrectWholeInstance = 0; numTrueSegments = new int[targets.size()]; numPredictedSegments = new int[targets.size()]; numCorrectSegments = new int[targets.size()]; matrixEntry = new int[targets.size()][targets.size()];// String PUNT = "[,\\.;:?!()*]";// Pattern puntPattern = Pattern.compile(PUNT); for(int i=0; i<instancelist.size(); i++){ Instance instance = instancelist.getInstance(i); //N-best tagging viterbiP_NBest = crf.viterbiPath_NBest((Sequence)instance.getData(), N);//n-best list Sequence[] nbestlist = viterbiP_NBest.outputNBest(); boolean wholeInstanceCorrect = true; Sequence trueSequence = (Sequence)instance.getTarget(); tokenSequence = (TokenSequence)instance.getSource(); for (int j = 0; j < trueSequence.size(); j++) { String tokenStr = tokenSequence.getToken(j).getText(); if(puntPattern.matcher(tokenStr).matches() && ignorePunct ){//ignore punct;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -