⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaboost.java

📁 mallet是自然语言处理、机器学习领域的一个开源项目。
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.pipe.*;import edu.umass.cs.mallet.base.types.*;/**	 AdaBoost	 Robert E. Schapire.	 "The boosting approach to machine learning: An overview."	 In MSRI Workshop on Nonlinear Estimation and Classification, 2002. 	 http://www.research.att.com/~schapire/cgi-bin/uncompress-papers/msri.ps   @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */public class AdaBoost extends Classifier{    Classifier[] weakClassifiers;    double[] alphas;        public AdaBoost (Pipe instancePipe, Classifier[] weakClassifiers, double[] alphas)    {        super (instancePipe);        this.weakClassifiers = weakClassifiers;        this.alphas = alphas;    }    // added by Gary    /**     * Get the number of weak classifiers in this ensemble classifier     */    public int getNumWeakClassifiers()    {        return alphas.length;    }    // added by Gary    /**      * Return an AdaBoost classifier that uses only the first     * <tt>numWeakClassifiersToUse</tt> weak learners.     *      * <p>The returned classifier's Pipe and weak classifiers     * are backed by the respective objects of this classifier,      * so changes to the returned classifier's Pipe and weak     * classifiers are reflected in this classifier, and vice versa.     */    public AdaBoost getTrimmedClassifier(int numWeakClassifiersToUse)    {        if (numWeakClassifiersToUse <= 0 || numWeakClassifiersToUse > weakClassifiers.length)	  throw new IllegalArgumentException("number of weak learners to use out of range:" 				       + numWeakClassifiersToUse);        Classifier[] newWeakClassifiers = new Classifier[numWeakClassifiersToUse];        System.arraycopy(weakClassifiers, 0, newWeakClassifiers, 0, numWeakClassifiersToUse);        double[] newAlphas = new double[numWeakClassifiersToUse];        System.arraycopy(alphas, 0, newAlphas, 0, numWeakClassifiersToUse);        return new AdaBoost(instancePipe, newWeakClassifiers, newAlphas);    }          public Classification classify (Instance inst)    {        return classify(inst, weakClassifiers.length);    }    /**     * Classify the given instance using only the first     * <tt>numWeakClassifiersToUse</tt> classifiers     * trained during boosting     */    public Classification classify (Instance inst, int numWeakClassifiersToUse)    {    	if (numWeakClassifiersToUse <= 0 || numWeakClassifiersToUse > weakClassifiers.length)    		throw new IllegalArgumentException("number of weak learners to use out of range:"     				+ numWeakClassifiersToUse);    	FeatureVector fv = (FeatureVector) inst.getData();    	assert (instancePipe == null || fv.getAlphabet () == this.instancePipe.getDataAlphabet ());    	    	int numClasses = getLabelAlphabet().size();    	double[] scores = new double[numClasses];    	int bestIndex;    	double sum = 0;    	// Gather scores of all weakClassifiers    	for (int round = 0; round < numWeakClassifiersToUse; round++) {    		bestIndex = weakClassifiers[round].classify(inst).getLabeling().getBestIndex();    		scores[bestIndex] += alphas[round];    		sum += scores[bestIndex];    	}    	// Normalize the scores    	for (int i = 0; i < scores.length; i++)    		scores[i] /= sum;    	return new Classification (inst, this, new LabelVector (getLabelAlphabet(), scores));    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -