⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nbestviterbiconfidenceestimator.java

📁 mallet是自然语言处理、机器学习领域的一个开源项目。
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//** 		@author Aron Culotta <a href="mailto:culotta@cs.umass.edu">culotta@cs.umass.edu</a>*/package edu.umass.cs.mallet.base.fst.confidence;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.MalletLogger;import java.util.logging.*;import edu.umass.cs.mallet.base.pipe.iterator.*;import edu.umass.cs.mallet.base.fst.*;import java.util.*;/**	 Estimates the confidence of an entire sequence by the probability	 that one of the the Viterbi paths rank 2->N is correct. Note that	 this is a strange definition of confidence, and is mainly used for	 {@link MultipleChoiceCRFActiveLearner}, where we want to find	 Instances that are mislabeled, but are likely to have a correct	 labeling in the top N Viterbi paths. */public class NBestViterbiConfidenceEstimator extends TransducerSequenceConfidenceEstimator{	/** total number of Viterbi paths */	int N;		private static Logger logger = MalletLogger.getLogger(		NBestViterbiConfidenceEstimator.class.getName());	public NBestViterbiConfidenceEstimator (Transducer model, int N) {		this.model = model;		this.N = N;	}	/**		 Calculates the confidence in the tagging of a {@link Instance}.	 */	public double estimateConfidenceFor (Instance instance,																			 Object[] startTags,																			 Object[] inTags) {		Transducer.Lattice lattice = model.forwardBackward ((Sequence)instance.getData());		double[] costs = model.viterbiPath_NBest ((Sequence)instance.getData(), N).costNBest();		double latticeCost = lattice.getCost();		double prFirstIsCorrect = Math.exp( latticeCost - costs[0] );		double prOtherIsCorrect = 0.0;		for (int i=1; i < N; i++)			prOtherIsCorrect += Math.exp( latticeCost - costs[i] );		return prFirstIsCorrect / prOtherIsCorrect;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -