⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jrip.html

📁 weka是机器学习和数据挖掘领域最有影响力的开源项目之一
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc (build 1.5.0_10) on Fri Jan 26 16:34:46 NZDT 2007 --><TITLE>JRip</TITLE><META NAME="keywords" CONTENT="weka.classifiers.rules.JRip class"><LINK REL ="stylesheet" TYPE="text/css" HREF="../../../stylesheet.css" TITLE="Style"><SCRIPT type="text/javascript">function windowTitle(){    parent.document.title="JRip";}</SCRIPT><NOSCRIPT></NOSCRIPT></HEAD><BODY BGCOLOR="white" onload="windowTitle();"><!-- ========= START OF TOP NAVBAR ======= --><A NAME="navbar_top"><!-- --></A><A HREF="#skip-navbar_top" title="Skip navigation links"></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY=""><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD> <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="http://www.cs.waikato.ac.nz/ml/weka/" target="_blank"><FONT CLASS="NavBarFont1"><B>Weka's home</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../weka/classifiers/rules/DecisionTable.hashKey.html" title="class in weka.classifiers.rules"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../../weka/classifiers/rules/M5Rules.html" title="class in weka.classifiers.rules"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html?weka/classifiers/rules/JRip.html" target="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="JRip.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;&nbsp;<SCRIPT type="text/javascript">  <!--  if(window==top) {    document.writeln('<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>');  }  //--></SCRIPT><NOSCRIPT>  <A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A></NOSCRIPT></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL:&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><A NAME="skip-navbar_top"></A><!-- ========= END OF TOP NAVBAR ========= --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers.rules</FONT><BR>Class JRip</H2><PRE>java.lang.Object  <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">weka.classifiers.Classifier</A>      <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><B>weka.classifiers.rules.JRip</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.io.Serializable, java.lang.Cloneable, <A HREF="../../../weka/core/AdditionalMeasureProducer.html" title="interface in weka.core">AdditionalMeasureProducer</A>, <A HREF="../../../weka/core/CapabilitiesHandler.html" title="interface in weka.core">CapabilitiesHandler</A>, <A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A>, <A HREF="../../../weka/core/WeightedInstancesHandler.html" title="interface in weka.core">WeightedInstancesHandler</A></DD></DL><HR><DL><DT><PRE>public class <B>JRip</B><DT>extends <A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A><DT>implements <A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../weka/core/AdditionalMeasureProducer.html" title="interface in weka.core">AdditionalMeasureProducer</A>, <A HREF="../../../weka/core/WeightedInstancesHandler.html" title="interface in weka.core">WeightedInstancesHandler</A>, <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DL></PRE><P><!-- globalinfo-start --> This class implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W. Cohen as an optimized version of IREP. <br/> <br/> The algorithm is briefly described as follows: <br/> <br/> Initialize RS = {}, and for each class from the less prevalent one to the more frequent one, DO: <br/> <br/> 1. Building stage:<br/> Repeat 1.1 and 1.2 until the descrition length (DL) of the ruleset and examples is 64 bits greater than the smallest DL met so far, or there are no positive examples, or the error rate &gt;= 50%. <br/> <br/> 1.1. Grow phase:<br/> Grow one rule by greedily adding antecedents (or conditions) to the rule until the rule is perfect (i.e. 100% accurate).  The procedure tries every possible value of each attribute and selects the condition with highest information gain: p(log(p/t)-log(P/T)).<br/> <br/> 1.2. Prune phase:<br/> Incrementally prune each rule and allow the pruning of any final sequences of the antecedents;The pruning metric is (p-n)/(p+n) -- but it's actually 2p/(p+n) -1, so in this implementation we simply use p/(p+n) (actually (p+1)/(p+n+2), thus if p+n is 0, it's 0.5).<br/> <br/> 2. Optimization stage:<br/>  after generating the initial ruleset {Ri}, generate and prune two variants of each rule Ri from randomized data using procedure 1.1 and 1.2. But one variant is generated from an empty rule while the other is generated by greedily adding antecedents to the original rule. Moreover, the pruning metric used here is (TP+TN)/(P+N).Then the smallest possible DL for each variant and the original rule is computed.  The variant with the minimal DL is selected as the final representative of Ri in the ruleset.After all the rules in {Ri} have been examined and if there are still residual positives, more rules are generated based on the residual positives using Building Stage again. <br/> 3. Delete the rules from the ruleset that would increase the DL of the whole ruleset if it were in it. and add resultant ruleset to RS. <br/> ENDDO<br/> <br/> Note that there seem to be 2 bugs in the original ripper program that would affect the ruleset size and accuracy slightly.  This implementation avoids these bugs and thus is a little bit different from Cohen's original implementation. Even after fixing the bugs, since the order of classes with the same frequency is not defined in ripper, there still seems to be some trivial difference between this implementation and the original ripper, especially for audiology data in UCI repository, where there are lots of classes of few instances.<br/> <br/> Details please see:<br/> <br/> William W. Cohen: Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning, 115-123, 1995.<br/> <br/> PS.  We have compared this implementation with the original ripper implementation in aspects of accuracy, ruleset size and running time on both artificial data "ab+bcd+defg" and UCI datasets.  In all these aspects it seems to be quite comparable to the original ripper implementation.  However, we didn't consider memory consumption optimization in this implementation.<br/> <br/> <p/> <!-- globalinfo-end --> <!-- technical-bibtex-start --> BibTeX: <pre> &#64;inproceedings{Cohen1995,    author = {William W. Cohen},    booktitle = {Twelfth International Conference on Machine Learning},    pages = {115-123},    publisher = {Morgan Kaufmann},    title = {Fast Effective Rule Induction},    year = {1995} } </pre> <p/> <!-- technical-bibtex-end --> <!-- options-start --> Valid options are: <p/>  <pre> -F &lt;number of folds&gt;  Set number of folds for REP  One fold is used as pruning set.  (default 3)</pre>  <pre> -N &lt;min. weights&gt;  Set the minimal weights of instances  within a split.  (default 2.0)</pre>  <pre> -O &lt;number of runs&gt;  Set the number of runs of  optimizations. (Default: 2)</pre>  <pre> -D  Set whether turn on the  debug mode (Default: false)</pre>  <pre> -S &lt;seed&gt;  The seed of randomization  (Default: 1)</pre>  <pre> -E  Whether NOT check the error rate&gt;=0.5  in stopping criteria  (default: check)</pre>  <pre> -P  Whether NOT use pruning  (default: use pruning)</pre>  <!-- options-end --><P><P><DL><DT><B>Version:</B></DT>  <DD>$Revision: 1.19 $</DD><DT><B>Author:</B></DT>  <DD>Xin Xu (xx5@cs.waikato.ac.nz), Eibe Frank (eibe@cs.waikato.ac.nz)</DD><DT><B>See Also:</B><DD><A HREF="../../../serialized-form.html#weka.classifiers.rules.JRip">Serialized Form</A></DL><HR><P><!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#JRip()">JRip</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Method Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Builds Ripper in the order of class frequencies.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#checkErrorRateTipText()">checkErrorRateTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the tip text for this property</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#debugTipText()">debugTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the tip text for this property</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;datum)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Classify the test instance with the rule learner and provide the class distributions</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#enumerateMeasures()">enumerateMeasures</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration of the additional measure names</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#foldsTipText()">foldsTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the tip text for this property</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../weka/core/Capabilities.html" title="class in weka.core">Capabilities</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getCapabilities()">getCapabilities</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns default capabilities of the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getCheckErrorRate()">getCheckErrorRate</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether to check for error rate is in stopping criterion</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getDebug()">getDebug</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether debug information is output to the console</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getFolds()">getFolds</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of folds</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getMeasure(java.lang.String)">getMeasure</A></B>(java.lang.String&nbsp;additionalMeasureName)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the value of the named measure</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/rules/JRip.html#getMinNo()">getMinNo</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the minimum total weight of the instances in a rule</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -