📄 ensembleselection.html
字号:
<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class weka.classifiers.<A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../weka/classifiers/Classifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A>, <A HREF="../../../weka/classifiers/Classifier.html#debugTipText()">debugTipText</A>, <A HREF="../../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../../weka/classifiers/Classifier.html#getDebug()">getDebug</A>, <A HREF="../../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A>, <A HREF="../../../weka/classifiers/Classifier.html#makeCopy(weka.classifiers.Classifier)">makeCopy</A>, <A HREF="../../../weka/classifiers/Classifier.html#setDebug(boolean)">setDebug</A></CODE></TD></TR></TABLE> <A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Methods inherited from class java.lang.Object</B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>equals, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE> <P><!-- ============ FIELD DETAIL =========== --><A NAME="field_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2"><B>Field Detail</B></FONT></TH></TR></TABLE><A NAME="TAGS_METRIC"><!-- --></A><H3>TAGS_METRIC</H3><PRE>public static final <A HREF="../../../weka/core/Tag.html" title="class in weka.core">Tag</A>[] <B>TAGS_METRIC</B></PRE><DL><DD>defines metrics that can be chosen for hillclimbing<P><DL></DL></DL><HR><A NAME="ALGORITHM_FORWARD"><!-- --></A><H3>ALGORITHM_FORWARD</H3><PRE>public static final int <B>ALGORITHM_FORWARD</B></PRE><DL><DD>The "enumeration" of the algorithms we can use. Forward - forward selection. For hillclimb iterations,<P><DL><DT><B>See Also:</B><DD><A HREF="../../../constant-values.html#weka.classifiers.meta.EnsembleSelection.ALGORITHM_FORWARD">Constant Field Values</A></DL></DL><HR><A NAME="ALGORITHM_BACKWARD"><!-- --></A><H3>ALGORITHM_BACKWARD</H3><PRE>public static final int <B>ALGORITHM_BACKWARD</B></PRE><DL><DL><DT><B>See Also:</B><DD><A HREF="../../../constant-values.html#weka.classifiers.meta.EnsembleSelection.ALGORITHM_BACKWARD">Constant Field Values</A></DL></DL><HR><A NAME="ALGORITHM_FORWARD_BACKWARD"><!-- --></A><H3>ALGORITHM_FORWARD_BACKWARD</H3><PRE>public static final int <B>ALGORITHM_FORWARD_BACKWARD</B></PRE><DL><DL><DT><B>See Also:</B><DD><A HREF="../../../constant-values.html#weka.classifiers.meta.EnsembleSelection.ALGORITHM_FORWARD_BACKWARD">Constant Field Values</A></DL></DL><HR><A NAME="ALGORITHM_BEST"><!-- --></A><H3>ALGORITHM_BEST</H3><PRE>public static final int <B>ALGORITHM_BEST</B></PRE><DL><DL><DT><B>See Also:</B><DD><A HREF="../../../constant-values.html#weka.classifiers.meta.EnsembleSelection.ALGORITHM_BEST">Constant Field Values</A></DL></DL><HR><A NAME="ALGORITHM_BUILD_LIBRARY"><!-- --></A><H3>ALGORITHM_BUILD_LIBRARY</H3><PRE>public static final int <B>ALGORITHM_BUILD_LIBRARY</B></PRE><DL><DL><DT><B>See Also:</B><DD><A HREF="../../../constant-values.html#weka.classifiers.meta.EnsembleSelection.ALGORITHM_BUILD_LIBRARY">Constant Field Values</A></DL></DL><HR><A NAME="TAGS_ALGORITHM"><!-- --></A><H3>TAGS_ALGORITHM</H3><PRE>public static final <A HREF="../../../weka/core/Tag.html" title="class in weka.core">Tag</A>[] <B>TAGS_ALGORITHM</B></PRE><DL><DD>defines metrics that can be chosen for hillclimbing<P><DL></DL></DL><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TH></TR></TABLE><A NAME="EnsembleSelection()"><!-- --></A><H3>EnsembleSelection</H3><PRE>public <B>EnsembleSelection</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="1"><FONT SIZE="+2"><B>Method Detail</B></FONT></TH></TR></TABLE><A NAME="globalInfo()"><!-- --></A><H3>globalInfo</H3><PRE>public java.lang.String <B>globalInfo</B>()</PRE><DL><DD>Returns a string describing classifier<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>a description suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="listOptions()"><!-- --></A><H3>listOptions</H3><PRE>public java.util.Enumeration <B>listOptions</B>()</PRE><DL><DD>Returns an enumeration describing the available options.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#listOptions()">listOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html#listOptions()">listOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html" title="class in weka.classifiers">RandomizableClassifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an enumeration of all the available options.</DL></DD></DL><HR><A NAME="getCapabilities()"><!-- --></A><H3>getCapabilities</H3><PRE>public <A HREF="../../../weka/core/Capabilities.html" title="class in weka.core">Capabilities</A> <B>getCapabilities</B>()</PRE><DL><DD>We return true for basically everything except for Missing class values, because we can't really answer for all the models in our library. If any of them don't work with the supplied data then we just trap the exception.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/CapabilitiesHandler.html#getCapabilities()">getCapabilities</A></CODE> in interface <CODE><A HREF="../../../weka/core/CapabilitiesHandler.html" title="interface in weka.core">CapabilitiesHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#getCapabilities()">getCapabilities</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>the capabilities of this classifier<DT><B>See Also:</B><DD><A HREF="../../../weka/core/Capabilities.html" title="class in weka.core"><CODE>Capabilities</CODE></A></DL></DD></DL><HR><A NAME="setOptions(java.lang.String[])"><!-- --></A><H3>setOptions</H3><PRE>public void <B>setOptions</B>(java.lang.String[] options) throws java.lang.Exception</PRE><DL><DD><!-- options-start --> Valid options are: <p/> <pre> -L </path/to/modelLibrary> Specifies the Model Library File, continuing the list of all models.</pre> <pre> -W </path/to/working/directory> Specifies the Working Directory, where all models will be stored.</pre> <pre> -B <numModelBags> Set the number of bags, i.e., number of iterations to run the ensemble selection algorithm.</pre> <pre> -E <modelRatio> Set the ratio of library models that will be randomly chosen to populate each bag of models.</pre> <pre> -V <validationRatio> Set the ratio of the training data set that will be reserved for validation.</pre> <pre> -H <hillClimbIterations> Set the number of hillclimbing iterations to be performed on each model bag.</pre> <pre> -I <sortInitialization> Set the the ratio of the ensemble library that the sort initialization algorithm will be able to choose from while initializing the ensemble for each model bag</pre> <pre> -X <numFolds> Sets the number of cross-validation folds.</pre> <pre> -P <hillclimbMettric> Specify the metric that will be used for model selection during the hillclimbing algorithm. Valid metrics are: accuracy, rmse, roc, precision, recall, fscore, all</pre> <pre> -A <algorithm> Specifies the algorithm to be used for ensemble selection. Valid algorithms are: "forward" (default) for forward selection. "backward" for backward elimination. "both" for both forward and backward elimination. "best" to simply print out top performer from the ensemble library "library" to only train the models in the ensemble library</pre> <pre> -R Flag whether or not models can be selected more than once for an ensemble.</pre> <pre> -G Whether sort initialization greedily stops adding models when performance degrades.</pre> <pre> -O Flag for verbose output. Prints out performance of all selected models.</pre> <pre> -S <num> Random number seed. (default 1)</pre> <pre> -D If set, classifier is run in debug mode and may output additional info to the console</pre> <!-- options-end --><P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#setOptions(java.lang.String[])">setOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html#setOptions(java.lang.String[])">setOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html" title="class in weka.classifiers">RandomizableClassifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>options</CODE> - the list of options as an array of strings<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if an option is not supported</DL></DD></DL><HR><A NAME="getOptions()"><!-- --></A><H3>getOptions</H3><PRE>public java.lang.String[] <B>getOptions</B>()</PRE><DL><DD>Gets the current settings of the Classifier.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#getOptions()">getOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html#getOptions()">getOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/RandomizableClassifier.html" title="class in weka.classifiers">RandomizableClassifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an array of strings suitable for passing to setOptions</DL></DD></DL><HR><A NAME="numFoldsTipText()"><!-- --></A><H3>numFoldsTipText</H3><PRE>public java.lang.String <B>numFoldsTipText</B>()</PRE><DL><DD>Returns the tip text for this property<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="getNumFolds()"><!-- --></A><H3>getNumFolds</H3><PRE>public int <B>getNumFolds</B>()</PRE><DL><DD>Gets the number of folds for the cross-validation.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of folds for the cross-validation</DL></DD></DL><HR><A NAME="setNumFolds(int)"><!-- --></A><H3>setNumFolds</H3><PRE>public void <B>setNumFolds</B>(int numFolds) throws java.lang.Exception</PRE><DL><DD>Sets the number of folds for the cross-validation.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>numFolds</CODE> - the number of folds for the cross-validation<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if parameter illegal</DL></DD></DL><HR><A NAME="libraryTipText()"><!-- --></A><H3>libraryTipText</H3><PRE>public java.lang.String <B>libraryTipText</B>()</PRE><DL><DD>Returns the tip text for this property<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -