⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dagging.html

📁 weka是机器学习和数据挖掘领域最有影响力的开源项目之一
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc (build 1.5.0_10) on Fri Jan 26 16:34:44 NZDT 2007 --><TITLE>Dagging</TITLE><META NAME="keywords" CONTENT="weka.classifiers.meta.Dagging class"><LINK REL ="stylesheet" TYPE="text/css" HREF="../../../stylesheet.css" TITLE="Style"><SCRIPT type="text/javascript">function windowTitle(){    parent.document.title="Dagging";}</SCRIPT><NOSCRIPT></NOSCRIPT></HEAD><BODY BGCOLOR="white" onload="windowTitle();"><!-- ========= START OF TOP NAVBAR ======= --><A NAME="navbar_top"><!-- --></A><A HREF="#skip-navbar_top" title="Skip navigation links"></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY=""><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD> <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="http://www.cs.waikato.ac.nz/ml/weka/" target="_blank"><FONT CLASS="NavBarFont1"><B>Weka's home</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../weka/classifiers/meta/CVParameterSelection.html" title="class in weka.classifiers.meta"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../../weka/classifiers/meta/Decorate.html" title="class in weka.classifiers.meta"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html?weka/classifiers/meta/Dagging.html" target="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="Dagging.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;&nbsp;<SCRIPT type="text/javascript">  <!--  if(window==top) {    document.writeln('<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>');  }  //--></SCRIPT><NOSCRIPT>  <A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A></NOSCRIPT></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL:&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><A NAME="skip-navbar_top"></A><!-- ========= END OF TOP NAVBAR ========= --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers.meta</FONT><BR>Class Dagging</H2><PRE>java.lang.Object  <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">weka.classifiers.Classifier</A>      <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../weka/classifiers/SingleClassifierEnhancer.html" title="class in weka.classifiers">weka.classifiers.SingleClassifierEnhancer</A>          <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../weka/classifiers/RandomizableSingleClassifierEnhancer.html" title="class in weka.classifiers">weka.classifiers.RandomizableSingleClassifierEnhancer</A>              <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><B>weka.classifiers.meta.Dagging</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.io.Serializable, java.lang.Cloneable, <A HREF="../../../weka/core/CapabilitiesHandler.html" title="interface in weka.core">CapabilitiesHandler</A>, <A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../weka/core/Randomizable.html" title="interface in weka.core">Randomizable</A>, <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DD></DL><HR><DL><DT><PRE>public class <B>Dagging</B><DT>extends <A HREF="../../../weka/classifiers/RandomizableSingleClassifierEnhancer.html" title="class in weka.classifiers">RandomizableSingleClassifierEnhancer</A><DT>implements <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DL></PRE><P><!-- globalinfo-start --> This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier. Predictions are made via majority vote, since all the generated base classifiers are put into the Vote meta classifier. <br/> Useful for base classifiers that are quadratic or worse in time behavior, regarding number of instances in the training data. <br/> <br/> For more information, see: <br/> Ting, K. M., Witten, I. H.: Stacking Bagged and Dagged Models. In: Fourteenth international Conference on Machine Learning, San Francisco, CA, 367-375, 1997. <p/> <!-- globalinfo-end -->  <!-- technical-bibtex-start --> BibTeX: <pre> &#64;inproceedings{Ting1997,    address = {San Francisco, CA},    author = {Ting, K. M. and Witten, I. H.},    booktitle = {Fourteenth international Conference on Machine Learning},    editor = {D. H. Fisher},    pages = {367-375},    publisher = {Morgan Kaufmann Publishers},    title = {Stacking Bagged and Dagged Models},    year = {1997} } </pre> <p/> <!-- technical-bibtex-end --> <!-- options-start --> Valid options are: <p/>  <pre> -F &lt;folds&gt;  The number of folds for splitting the training set into  smaller chunks for the base classifier.  (default 10)</pre>  <pre> -verbose  Whether to print some more information during building the  classifier.  (default is off)</pre>  <pre> -S &lt;num&gt;  Random number seed.  (default 1)</pre>  <pre> -D  If set, classifier is run in debug mode and  may output additional info to the console</pre>  <pre> -W  Full name of base classifier.  (default: weka.classifiers.functions.SMO)</pre>  <pre>  Options specific to classifier weka.classifiers.functions.SMO: </pre>  <pre> -D  If set, classifier is run in debug mode and  may output additional info to the console</pre>  <pre> -no-checks  Turns off all checks - use with caution!  Turning them off assumes that data is purely numeric, doesn't  contain any missing values, and has a nominal class. Turning them  off also means that no header information will be stored if the  machine is linear. Finally, it also assumes that no instance has  a weight equal to 0.  (default: checks on)</pre>  <pre> -C &lt;double&gt;  The complexity constant C. (default 1)</pre>  <pre> -N  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre>  <pre> -L &lt;double&gt;  The tolerance parameter. (default 1.0e-3)</pre>  <pre> -P &lt;double&gt;  The epsilon for round-off error. (default 1.0e-12)</pre>  <pre> -M  Fit logistic models to SVM outputs. </pre>  <pre> -V &lt;double&gt;  The number of folds for the internal  cross-validation. (default -1, use training data)</pre>  <pre> -W &lt;double&gt;  The random number seed. (default 1)</pre>  <pre> -K &lt;classname and parameters&gt;  The Kernel to use.  (default: weka.classifiers.functions.supportVector.PolyKernel)</pre>  <pre>  Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: </pre>  <pre> -D  Enables debugging output (if available) to be printed.  (default: off)</pre>  <pre> -no-checks  Turns off all checks - use with caution!  (default: checks on)</pre>  <pre> -C &lt;num&gt;  The size of the cache (a prime number).  (default: 250007)</pre>  <pre> -E &lt;num&gt;  The Exponent to use.  (default: 1.0)</pre>  <pre> -L  Use lower-order terms.  (default: no)</pre>  <!-- options-end --> Options after -- are passed to the designated classifier.<p/><P><P><DL><DT><B>Version:</B></DT>  <DD>$Revision: 1.5 $</DD><DT><B>Author:</B></DT>  <DD>Bernhard Pfahringer (bernhard at cs dot waikato dot ac dot nz), FracPete (fracpete at waikato dot ac dot nz)</DD><DT><B>See Also:</B><DD><A HREF="../../../weka/classifiers/meta/Vote.html" title="class in weka.classifiers.meta"><CODE>Vote</CODE></A>, <A HREF="../../../serialized-form.html#weka.classifiers.meta.Dagging">Serialized Form</A></DL><HR><P><!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../../weka/classifiers/meta/Dagging.html#Dagging()">Dagging</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Constructor.</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Method Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/meta/Dagging.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;data)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bagging method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/meta/Dagging.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculates the class membership probabilities for the given test instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/meta/Dagging.html#getNumFolds()">getNumFolds</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of folds to use for splitting the training set.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/meta/Dagging.html#getOptions()">getOptions</A></B>()</CODE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -