⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k2.html

📁 weka是机器学习和数据挖掘领域最有影响力的开源项目之一
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc (build 1.5.0_10) on Fri Jan 26 16:34:42 NZDT 2007 --><TITLE>K2</TITLE><META NAME="keywords" CONTENT="weka.classifiers.bayes.net.search.global.K2 class"><LINK REL ="stylesheet" TYPE="text/css" HREF="../../../../../../stylesheet.css" TITLE="Style"><SCRIPT type="text/javascript">function windowTitle(){    parent.document.title="K2";}</SCRIPT><NOSCRIPT></NOSCRIPT></HEAD><BODY BGCOLOR="white" onload="windowTitle();"><!-- ========= START OF TOP NAVBAR ======= --><A NAME="navbar_top"><!-- --></A><A HREF="#skip-navbar_top" title="Skip navigation links"></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY=""><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD> <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="http://www.cs.waikato.ac.nz/ml/weka/" target="_blank"><FONT CLASS="NavBarFont1"><B>Weka's home</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../../../../weka/classifiers/bayes/net/search/global/HillClimber.html" title="class in weka.classifiers.bayes.net.search.global"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../../../../../weka/classifiers/bayes/net/search/global/RepeatedHillClimber.html" title="class in weka.classifiers.bayes.net.search.global"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../../../../index.html?weka/classifiers/bayes/net/search/global/K2.html" target="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="K2.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;&nbsp;<SCRIPT type="text/javascript">  <!--  if(window==top) {    document.writeln('<A HREF="../../../../../../allclasses-noframe.html"><B>All Classes</B></A>');  }  //--></SCRIPT><NOSCRIPT>  <A HREF="../../../../../../allclasses-noframe.html"><B>All Classes</B></A></NOSCRIPT></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;<A HREF="#fields_inherited_from_class_weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL:&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><A NAME="skip-navbar_top"></A><!-- ========= END OF TOP NAVBAR ========= --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers.bayes.net.search.global</FONT><BR>Class K2</H2><PRE>java.lang.Object  <IMG SRC="../../../../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../../../../weka/classifiers/bayes/net/search/SearchAlgorithm.html" title="class in weka.classifiers.bayes.net.search">weka.classifiers.bayes.net.search.SearchAlgorithm</A>      <IMG SRC="../../../../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../../../../weka/classifiers/bayes/net/search/global/GlobalScoreSearchAlgorithm.html" title="class in weka.classifiers.bayes.net.search.global">weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm</A>          <IMG SRC="../../../../../../resources/inherit.gif" ALT="extended by "><B>weka.classifiers.bayes.net.search.global.K2</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.io.Serializable, <A HREF="../../../../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DD></DL><HR><DL><DT><PRE>public class <B>K2</B><DT>extends <A HREF="../../../../../../weka/classifiers/bayes/net/search/global/GlobalScoreSearchAlgorithm.html" title="class in weka.classifiers.bayes.net.search.global">GlobalScoreSearchAlgorithm</A><DT>implements <A HREF="../../../../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DL></PRE><P><!-- globalinfo-start --> This Bayes Network learning algorithm uses a hill climbing algorithm restricted by an order on the variables.<br/> <br/> For more information see:<br/> <br/> G.F. Cooper, E. Herskovits (1990). A Bayesian method for constructing Bayesian belief networks from databases.<br/> <br/> G. Cooper, E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning. 9(4):309-347.<br/> <br/> Works with nominal variables and no missing values only. <p/> <!-- globalinfo-end --> <!-- technical-bibtex-start --> BibTeX: <pre> &#64;proceedings{Cooper1990,    author = {G.F. Cooper and E. Herskovits},    booktitle = {Proceedings of the Conference on Uncertainty in AI},    pages = {86-94},    title = {A Bayesian method for constructing Bayesian belief networks from databases},    year = {1990} }  &#64;article{Cooper1992,    author = {G. Cooper and E. Herskovits},    journal = {Machine Learning},    number = {4},    pages = {309-347},    title = {A Bayesian method for the induction of probabilistic networks from data},    volume = {9},    year = {1992} } </pre> <p/> <!-- technical-bibtex-end --> <!-- options-start --> Valid options are: <p/>  <pre> -N  Initial structure is empty (instead of Naive Bayes)</pre>  <pre> -P &lt;nr of parents&gt;  Maximum number of parents</pre>  <pre> -R  Random order.  (default false)</pre>  <pre> -mbc  Applies a Markov Blanket correction to the network structure,   after a network structure is learned. This ensures that all   nodes in the network are part of the Markov blanket of the   classifier node.</pre>  <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV]  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre>  <pre> -Q  Use probabilistic or 0/1 scoring.  (default probabilistic scoring)</pre>  <!-- options-end --><P><P><DL><DT><B>Version:</B></DT>  <DD>$Revision: 1.5 $</DD><DT><B>Author:</B></DT>  <DD>Remco Bouckaert (rrb@xm.co.nz)</DD><DT><B>See Also:</B><DD><A HREF="../../../../../../serialized-form.html#weka.classifiers.bayes.net.search.global.K2">Serialized Form</A></DL><HR><P><!-- =========== FIELD SUMMARY =========== --><A NAME="field_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Field Summary</B></FONT></TH></TR></TABLE>&nbsp;<A NAME="fields_inherited_from_class_weka.classifiers.bayes.net.search.global.GlobalScoreSearchAlgorithm"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Fields inherited from class weka.classifiers.bayes.net.search.global.<A HREF="../../../../../../weka/classifiers/bayes/net/search/global/GlobalScoreSearchAlgorithm.html" title="class in weka.classifiers.bayes.net.search.global">GlobalScoreSearchAlgorithm</A></B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../../../../weka/classifiers/bayes/net/search/global/GlobalScoreSearchAlgorithm.html#TAGS_CV_TYPE">TAGS_CV_TYPE</A></CODE></TD></TR></TABLE>&nbsp;<!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../../../../../weka/classifiers/bayes/net/search/global/K2.html#K2()">K2</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Method Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../../../weka/classifiers/bayes/net/search/global/K2.html#buildStructure(weka.classifiers.bayes.BayesNet, weka.core.Instances)">buildStructure</A></B>(<A HREF="../../../../../../weka/classifiers/bayes/BayesNet.html" title="class in weka.classifiers.bayes">BayesNet</A>&nbsp;bayesNet,               <A HREF="../../../../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;buildStructure determines the network structure/graph of the network with the K2 algorithm, restricted by its initial structure (which can be an empty graph, or a Naive Bayes graph.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -