⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adtree.html

📁 weka是机器学习和数据挖掘领域最有影响力的开源项目之一
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc (build 1.5.0_10) on Fri Jan 26 16:34:46 NZDT 2007 --><TITLE>ADTree</TITLE><META NAME="keywords" CONTENT="weka.classifiers.trees.ADTree class"><LINK REL ="stylesheet" TYPE="text/css" HREF="../../../stylesheet.css" TITLE="Style"><SCRIPT type="text/javascript">function windowTitle(){    parent.document.title="ADTree";}</SCRIPT><NOSCRIPT></NOSCRIPT></HEAD><BODY BGCOLOR="white" onload="windowTitle();"><!-- ========= START OF TOP NAVBAR ======= --><A NAME="navbar_top"><!-- --></A><A HREF="#skip-navbar_top" title="Skip navigation links"></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY=""><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD> <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="http://www.cs.waikato.ac.nz/ml/weka/" target="_blank"><FONT CLASS="NavBarFont1"><B>Weka's home</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;PREV CLASS&nbsp;&nbsp;<A HREF="../../../weka/classifiers/trees/BFTree.html" title="class in weka.classifiers.trees"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html?weka/classifiers/trees/ADTree.html" target="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="ADTree.html" target="_top"><B>NO FRAMES</B></A>  &nbsp;&nbsp;<SCRIPT type="text/javascript">  <!--  if(window==top) {    document.writeln('<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>');  }  //--></SCRIPT><NOSCRIPT>  <A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A></NOSCRIPT></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY:&nbsp;NESTED&nbsp;|&nbsp;<A HREF="#field_summary">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL:&nbsp;<A HREF="#field_detail">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><A NAME="skip-navbar_top"></A><!-- ========= END OF TOP NAVBAR ========= --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers.trees</FONT><BR>Class ADTree</H2><PRE>java.lang.Object  <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">weka.classifiers.Classifier</A>      <IMG SRC="../../../resources/inherit.gif" ALT="extended by "><B>weka.classifiers.trees.ADTree</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.io.Serializable, java.lang.Cloneable, <A HREF="../../../weka/classifiers/IterativeClassifier.html" title="interface in weka.classifiers">IterativeClassifier</A>, <A HREF="../../../weka/core/AdditionalMeasureProducer.html" title="interface in weka.core">AdditionalMeasureProducer</A>, <A HREF="../../../weka/core/CapabilitiesHandler.html" title="interface in weka.core">CapabilitiesHandler</A>, <A HREF="../../../weka/core/Drawable.html" title="interface in weka.core">Drawable</A>, <A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A>, <A HREF="../../../weka/core/WeightedInstancesHandler.html" title="interface in weka.core">WeightedInstancesHandler</A></DD></DL><HR><DL><DT><PRE>public class <B>ADTree</B><DT>extends <A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A><DT>implements <A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A>, <A HREF="../../../weka/core/Drawable.html" title="interface in weka.core">Drawable</A>, <A HREF="../../../weka/core/AdditionalMeasureProducer.html" title="interface in weka.core">AdditionalMeasureProducer</A>, <A HREF="../../../weka/core/WeightedInstancesHandler.html" title="interface in weka.core">WeightedInstancesHandler</A>, <A HREF="../../../weka/classifiers/IterativeClassifier.html" title="interface in weka.classifiers">IterativeClassifier</A>, <A HREF="../../../weka/core/TechnicalInformationHandler.html" title="interface in weka.core">TechnicalInformationHandler</A></DL></PRE><P><!-- globalinfo-start --> Class for generating an alternating decision tree. The basic algorithm is based on:<br/> <br/> Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999.<br/> <br/> This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning. <p/> <!-- globalinfo-end --> <!-- technical-bibtex-start --> BibTeX: <pre> &#64;inproceedings{Freund1999,    address = {Bled, Slovenia},    author = {Freund, Y. and Mason, L.},    booktitle = {Proceeding of the Sixteenth International Conference on Machine Learning},    pages = {124-133},    title = {The alternating decision tree learning algorithm},    year = {1999} } </pre> <p/> <!-- technical-bibtex-end --> <!-- options-start --> Valid options are: <p/>  <pre> -B &lt;number of boosting iterations&gt;  Number of boosting iterations.  (Default = 10)</pre>  <pre> -E &lt;-3|-2|-1|&gt;=0&gt;  Expand nodes: -3(all), -2(weight), -1(z_pure), &gt;=0 seed for random walk  (Default = -3)</pre>  <pre> -D  Save the instance data with the model</pre>  <!-- options-end --><P><P><DL><DT><B>Version:</B></DT>  <DD>$Revision: 1.6 $</DD><DT><B>Author:</B></DT>  <DD>Richard Kirkby (rkirkby@cs.waikato.ac.nz), Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)</DD><DT><B>See Also:</B><DD><A HREF="../../../serialized-form.html#weka.classifiers.trees.ADTree">Serialized Form</A></DL><HR><P><!-- =========== FIELD SUMMARY =========== --><A NAME="field_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Field Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#SEARCHPATH_ALL">SEARCHPATH_ALL</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;search mode: Expand all paths</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#SEARCHPATH_HEAVIEST">SEARCHPATH_HEAVIEST</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;search mode: Expand the heaviest path</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#SEARCHPATH_RANDOM">SEARCHPATH_RANDOM</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;search mode: Expand a random path</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#SEARCHPATH_ZPURE">SEARCHPATH_ZPURE</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;search mode: Expand the best z-pure path</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;<A HREF="../../../weka/core/Tag.html" title="class in weka.core">Tag</A>[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#TAGS_SEARCHPATH">TAGS_SEARCHPATH</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The search modes</TD></TR></TABLE>&nbsp;<A NAME="fields_inherited_from_class_weka.core.Drawable"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TH ALIGN="left"><B>Fields inherited from interface weka.core.<A HREF="../../../weka/core/Drawable.html" title="interface in weka.core">Drawable</A></B></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../weka/core/Drawable.html#BayesNet">BayesNet</A>, <A HREF="../../../weka/core/Drawable.html#NOT_DRAWABLE">NOT_DRAWABLE</A>, <A HREF="../../../weka/core/Drawable.html#TREE">TREE</A></CODE></TD></TR></TABLE>&nbsp;<!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#ADTree()">ADTree</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2"><B>Method Summary</B></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#boost()">boost</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Performs a single boosting iteration, using two-class optimized method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Builds a classifier for a set of instances.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.Object</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#clone()">clone</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Creates a clone that is identical to the current tree, but is independent.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the class probability distribution for an instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#done()">done</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Frees memory that is no longer needed for a final model - will no longer be able to increment the classifier after calling this.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#enumerateMeasures()">enumerateMeasures</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration of the additional measure names.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../weka/core/Capabilities.html" title="class in weka.core">Capabilities</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getCapabilities()">getCapabilities</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns default capabilities of the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getMeasure(java.lang.String)">getMeasure</A></B>(java.lang.String&nbsp;additionalMeasureName)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the value of the named measure.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getNumOfBoostingIterations()">getNumOfBoostingIterations</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of boosting iterations.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getOptions()">getOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the current settings of ADTree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getRandomSeed()">getRandomSeed</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets random seed for a random walk.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getSaveInstanceData()">getSaveInstanceData</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether the tree is to save instance data.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../weka/core/SelectedTag.html" title="class in weka.core">SelectedTag</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getSearchPath()">getSearchPath</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the method of searching the tree for a new insertion.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../weka/core/TechnicalInformation.html" title="class in weka.core">TechnicalInformation</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#getTechnicalInformation()">getTechnicalInformation</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an instance of a TechnicalInformation object, containing  detailed information about the technical background of this class, e.g., paper reference or book this class is based on.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/trees/ADTree.html#globalInfo()">globalInfo</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a string describing classifier</TD>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -