⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smo.html

📁 weka是机器学习和数据挖掘领域最有影响力的开源项目之一
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<DD><DL></DL></DD></DL><HR><A NAME="getCapabilities()"><!-- --></A><H3>getCapabilities</H3><PRE>public <A HREF="../../../weka/core/Capabilities.html" title="class in weka.core">Capabilities</A> <B>getCapabilities</B>()</PRE><DL><DD>Returns default capabilities of the classifier.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/CapabilitiesHandler.html#getCapabilities()">getCapabilities</A></CODE> in interface <CODE><A HREF="../../../weka/core/CapabilitiesHandler.html" title="interface in weka.core">CapabilitiesHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#getCapabilities()">getCapabilities</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>the capabilities of this classifier<DT><B>See Also:</B><DD><A HREF="../../../weka/core/Capabilities.html" title="class in weka.core"><CODE>Capabilities</CODE></A></DL></DD></DL><HR><A NAME="buildClassifier(weka.core.Instances)"><!-- --></A><H3>buildClassifier</H3><PRE>public void <B>buildClassifier</B>(<A HREF="../../../weka/core/Instances.html" title="class in weka.core">Instances</A>&nbsp;insts)                     throws java.lang.Exception</PRE><DL><DD>Method for building the classifier. Implements a one-against-one wrapper for multi-class problems.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#buildClassifier(weka.core.Instances)">buildClassifier</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>insts</CODE> - the set of training instances<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if the classifier can't be built successfully</DL></DD></DL><HR><A NAME="distributionForInstance(weka.core.Instance)"><!-- --></A><H3>distributionForInstance</H3><PRE>public double[] <B>distributionForInstance</B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;inst)                                 throws java.lang.Exception</PRE><DL><DD>Estimates class probabilities for given instance.<P><DD><DL><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>inst</CODE> - the instance to compute the probabilities for<DT><B>Returns:</B><DD>an array containing the estimated membership  probabilities of the test instance in each class  or the numeric prediction<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - in case of an error</DL></DD></DL><HR><A NAME="pairwiseCoupling(double[][], double[][])"><!-- --></A><H3>pairwiseCoupling</H3><PRE>public double[] <B>pairwiseCoupling</B>(double[][]&nbsp;n,                                 double[][]&nbsp;r)</PRE><DL><DD>Implements pairwise coupling.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>n</CODE> - the sum of weights used to train each model<DD><CODE>r</CODE> - the probability estimate from each model<DT><B>Returns:</B><DD>the coupled estimates</DL></DD></DL><HR><A NAME="obtainVotes(weka.core.Instance)"><!-- --></A><H3>obtainVotes</H3><PRE>public int[] <B>obtainVotes</B>(<A HREF="../../../weka/core/Instance.html" title="class in weka.core">Instance</A>&nbsp;inst)                  throws java.lang.Exception</PRE><DL><DD>Returns an array of votes for the given instance.<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>inst</CODE> - the instance<DT><B>Returns:</B><DD>array of votex<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if something goes wrong</DL></DD></DL><HR><A NAME="sparseWeights()"><!-- --></A><H3>sparseWeights</H3><PRE>public double[][][] <B>sparseWeights</B>()</PRE><DL><DD>Returns the weights in sparse format.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="sparseIndices()"><!-- --></A><H3>sparseIndices</H3><PRE>public int[][][] <B>sparseIndices</B>()</PRE><DL><DD>Returns the indices in sparse format.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="bias()"><!-- --></A><H3>bias</H3><PRE>public double[][] <B>bias</B>()</PRE><DL><DD>Returns the bias of each binary SMO.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="numClassAttributeValues()"><!-- --></A><H3>numClassAttributeValues</H3><PRE>public int <B>numClassAttributeValues</B>()</PRE><DL><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="classAttributeNames()"><!-- --></A><H3>classAttributeNames</H3><PRE>public java.lang.String[] <B>classAttributeNames</B>()</PRE><DL><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="attributeNames()"><!-- --></A><H3>attributeNames</H3><PRE>public java.lang.String[][][] <B>attributeNames</B>()</PRE><DL><DD>Returns the attribute names.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="listOptions()"><!-- --></A><H3>listOptions</H3><PRE>public java.util.Enumeration <B>listOptions</B>()</PRE><DL><DD>Returns an enumeration describing the available options.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#listOptions()">listOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#listOptions()">listOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an enumeration of all the available options.</DL></DD></DL><HR><A NAME="setOptions(java.lang.String[])"><!-- --></A><H3>setOptions</H3><PRE>public void <B>setOptions</B>(java.lang.String[]&nbsp;options)                throws java.lang.Exception</PRE><DL><DD>Parses a given list of options. <p/>   <!-- options-start --> Valid options are: <p/>  <pre> -D  If set, classifier is run in debug mode and  may output additional info to the console</pre>  <pre> -no-checks  Turns off all checks - use with caution!  Turning them off assumes that data is purely numeric, doesn't  contain any missing values, and has a nominal class. Turning them  off also means that no header information will be stored if the  machine is linear. Finally, it also assumes that no instance has  a weight equal to 0.  (default: checks on)</pre>  <pre> -C &lt;double&gt;  The complexity constant C. (default 1)</pre>  <pre> -N  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre>  <pre> -L &lt;double&gt;  The tolerance parameter. (default 1.0e-3)</pre>  <pre> -P &lt;double&gt;  The epsilon for round-off error. (default 1.0e-12)</pre>  <pre> -M  Fit logistic models to SVM outputs. </pre>  <pre> -V &lt;double&gt;  The number of folds for the internal  cross-validation. (default -1, use training data)</pre>  <pre> -W &lt;double&gt;  The random number seed. (default 1)</pre>  <pre> -K &lt;classname and parameters&gt;  The Kernel to use.  (default: weka.classifiers.functions.supportVector.PolyKernel)</pre>  <pre>  Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: </pre>  <pre> -D  Enables debugging output (if available) to be printed.  (default: off)</pre>  <pre> -no-checks  Turns off all checks - use with caution!  (default: checks on)</pre>  <pre> -C &lt;num&gt;  The size of the cache (a prime number).  (default: 250007)</pre>  <pre> -E &lt;num&gt;  The Exponent to use.  (default: 1.0)</pre>  <pre> -L  Use lower-order terms.  (default: no)</pre>    <!-- options-end --><P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#setOptions(java.lang.String[])">setOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#setOptions(java.lang.String[])">setOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>options</CODE> - the list of options as an array of strings<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if an option is not supported</DL></DD></DL><HR><A NAME="getOptions()"><!-- --></A><H3>getOptions</H3><PRE>public java.lang.String[] <B>getOptions</B>()</PRE><DL><DD>Gets the current settings of the classifier.<P><DD><DL><DT><B>Specified by:</B><DD><CODE><A HREF="../../../weka/core/OptionHandler.html#getOptions()">getOptions</A></CODE> in interface <CODE><A HREF="../../../weka/core/OptionHandler.html" title="interface in weka.core">OptionHandler</A></CODE><DT><B>Overrides:</B><DD><CODE><A HREF="../../../weka/classifiers/Classifier.html#getOptions()">getOptions</A></CODE> in class <CODE><A HREF="../../../weka/classifiers/Classifier.html" title="class in weka.classifiers">Classifier</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an array of strings suitable for passing to setOptions</DL></DD></DL><HR><A NAME="setChecksTurnedOff(boolean)"><!-- --></A><H3>setChecksTurnedOff</H3><PRE>public void <B>setChecksTurnedOff</B>(boolean&nbsp;value)</PRE><DL><DD>Disables or enables the checks (which could be time-consuming). Use with caution!<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>value</CODE> - if true turns off all checks</DL></DD></DL><HR><A NAME="getChecksTurnedOff()"><!-- --></A><H3>getChecksTurnedOff</H3><PRE>public boolean <B>getChecksTurnedOff</B>()</PRE><DL><DD>Returns whether the checks are turned off or not.<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>true if the checks are turned off</DL></DD></DL><HR><A NAME="checksTurnedOffTipText()"><!-- --></A><H3>checksTurnedOffTipText</H3><PRE>public java.lang.String <B>checksTurnedOffTipText</B>()</PRE><DL><DD>Returns the tip text for this property<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for                        displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="kernelTipText()"><!-- --></A><H3>kernelTipText</H3><PRE>public java.lang.String <B>kernelTipText</B>()</PRE><DL><DD>Returns the tip text for this property<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for                        displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="setKernel(weka.classifiers.functions.supportVector.Kernel)"><!-- --></A><H3>setKernel</H3><PRE>public void <B>setKernel</B>(<A HREF="../../../weka/classifiers/functions/supportVector/Kernel.html" title="class in weka.classifiers.functions.supportVector">Kernel</A>&nbsp;value)</PRE><DL><DD>sets the kernel to use<P><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>value</CODE> - the kernel to use</DL></DD></DL><HR><A NAME="getKernel()"><!-- --></A><H3>getKernel</H3><PRE>public <A HREF="../../../weka/classifiers/functions/supportVector/Kernel.html" title="class in weka.classifiers.functions.supportVector">Kernel</A> <B>getKernel</B>()</PRE><DL><DD>Returns the kernel to use<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the current kernel</DL></DD></DL><HR><A NAME="cTipText()"><!-- --></A><H3>cTipText</H3><PRE>public java.lang.String <B>cTipText</B>()</PRE><DL><DD>Returns the tip text for this property<P><DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -