📄 sdisplay.m
字号:
function symb_pvec = sdisplay(pvec,symbolicname)
%SDISPLAY Symbolic display of SDPVAR expression
%
% Note that the symbolic display only work if all
% involved variables are explicitely defined as
% scalar variables.
%
% Variables that not are defined as scalars
% will be given the name ryv(i). ryv means
% recovered YALMIP variables, i indicates the
% index in YALMIP (i.e. the result from getvariables)
%
% If you want to change the generic name ryv, just
% pass a second string argument
%
% EXAMPLES
% sdpvar x y
% sdisplay(x^2+y^2)
% ans =
% 'x^2+y^2'
%
% t = sdpvar(2,1);
% sdisplay(x^2+y^2+t'*t)
% ans =
% 'x^2+y^2+ryv(5)^2+ryv(6)^2'
% Author Johan L鰂berg
% $Id: sdisplay.m,v 1.10 2006/08/11 11:48:15 joloef Exp $
r1=1:size(pvec,1);
r2=1:size(pvec,2);
for pi = 1:size(pvec,1)
for pj = 1:size(pvec,2)
p = pvec(pi,pj);
if isa(p,'double')
symb_p = num2str(p);
else
LinearVariables = depends(p);
x = recover(LinearVariables);
[exponent_p,ordered_list] = exponents(p,x);
exponent_p = full(exponent_p);
names = cell(length(x),1);
% First, some boooring stuff. we need to
% figure out the symbolic names and connect
% these names to YALMIPs variable indicies
W = evalin('caller','whos');
for i = 1:size(W,1)
if strcmp(W(i).class,'sdpvar') | strcmp(W(i).class,'ncvar')
% Get the SDPVAR variable
thevars = evalin('caller',W(i).name);
% Distinguish 4 cases
% 1: Sclalar varible x
% 2: Vector variable x(i)
% 3: Matrix variable x(i,j)
% 4: Variable not really defined
if is(thevars,'scalar') & is(thevars,'linear') & length(getvariables(thevars))==1 & isequal(getbase(thevars),[0 1])
index_in_p = find(ismember(LinearVariables,getvariables(thevars)));
if ~isempty(index_in_p)
already = ~isempty(names{index_in_p});
if already
already = ~strfind(names{index_in_p},'internal');
if isempty(already)
already = 0;
end
end
else
already = 0;
end
if ~isempty(index_in_p) & ~already
% Case 1
names{index_in_p}=W(i).name;
end
elseif is(thevars,'lpcone')
if size(thevars,1)==size(thevars,2)
% Case 2
vars = getvariables(thevars);
indicies = find(ismember(vars,LinearVariables));
for ii = indicies
index_in_p = find(ismember(LinearVariables,vars(ii)));
if ~isempty(index_in_p)
already = ~isempty(names{index_in_p});
if already
already = ~strfind(names{index_in_p},'internal');
if isempty(already)
already = 0;
end
end
else
already = 0;
end
if ~isempty(index_in_p) & ~already
B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2));
[ix,jx,kx] = find(B);
ix=ix(1);
jx=jx(1);
names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')'];
end
end
else
% Case 3
vars = getvariables(thevars);
indicies = find(ismember(vars,LinearVariables));
for ii = indicies
index_in_p = find(ismember(LinearVariables,vars(ii)));
if ~isempty(index_in_p)
already = ~isempty(names{index_in_p});
if already
already = ~strfind(names{index_in_p},'internal');
if isempty(already)
already = 0;
end
end
else
already = 0;
end
if ~isempty(index_in_p) & ~already
names{index_in_p}=[W(i).name '(' num2str(ii) ')'];
end
end
end
elseif is(thevars,'sdpcone')
% Case 3
vars = getvariables(thevars);
indicies = find(ismember(vars,LinearVariables));
for ii = indicies
index_in_p = find(ismember(LinearVariables,vars(ii)));
if ~isempty(index_in_p)
already = ~isempty(names{index_in_p});
if already
already = ~strfind(names{index_in_p},'internal');
end
else
already = 0;
end
if ~isempty(index_in_p) & ~already
B = reshape(getbasematrix(thevars,vars(ii)),size(thevars,1),size(thevars,2));
[ix,jx,kx] = find(B);
ix=ix(1);
jx=jx(1);
names{index_in_p}=[W(i).name '(' num2str(ix) ',' num2str(jx) ')'];
end
end
else
% Case 4
vars = getvariables(thevars);
indicies = find(ismember(vars,LinearVariables));
for i = indicies
index_in_p = find(ismember(LinearVariables,vars(i)));
if ~isempty(index_in_p) & isempty(names{index_in_p})
names{index_in_p}=['internal(' num2str(vars(i)) ')'];
end
end
end
end
end
% Okay, now got all the symbolic names compiled.
% Time to construct the expression
% The code below is also a bit fucked up at the moment, due to
% the experimental code with noncommuting stuff
% Remove 0 constant
symb_p = '';
if size(ordered_list,1)>0
nummonoms = size(ordered_list,1);
if full(getbasematrix(p,0)) ~= 0
symb_p = num2str(full(getbasematrix(p,0)));
end
elseif all(exponent_p(1,:)==0)
symb_p = num2str(full(getbasematrix(p,0)));
exponent_p = exponent_p(2:end,:);
nummonoms = size(exponent_p,1);
else
nummonoms = size(exponent_p,1);
end
% Loop through all monomial terms
for i = 1:nummonoms
coeff = full(getbasematrixwithoutcheck(p,i));
switch coeff
case 1
coeff='+';
case -1
coeff = '-';
otherwise
if isreal(coeff)
if coeff >0
coeff = ['+' num2str2(coeff)];
else
coeff=[num2str2(coeff)];
end
else
coeff = ['+' '(' num2str2(coeff) ')' ];
end
end
if isempty(ordered_list)
symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))];
else
symb_p = [symb_p coeff symbmonom_noncommuting(names,ordered_list(i,:))];
end
end
% Clean up some left overs, lazy coding...
symb_p = strrep(symb_p,'+*','+');
symb_p = strrep(symb_p,'-*','-');
if symb_p(1)=='+'
symb_p = symb_p(2:end);
end
if symb_p(1)=='*'
symb_p = symb_p(2:end);
end
end
symb_pvec{pi,pj} = symb_p;
end
end
if prod(size(symb_pvec))==1 & nargout==0
display(symb_pvec{1,1});
clear symb_pvec
end
function s = symbmonom(names,monom)
s = '';
for j = 1:length(monom)
if abs( monom(j))>0
if isempty(names{j})
names{j} = ['internal(' num2str(j) ')'];
end
s = [s '*' names{j}];
if monom(j)~=1
s = [s '^' num2str(monom(j))];
end
end
end
function s = symbmonom_noncommuting(names,monom)
s = '';
j = 1;
while j <= length(monom)
if abs( monom(j))>0
if isempty(names{monom(j)})
names{monom(j)} = ['internal(' num2str(j) ')'];
end
s = [s '*' names{monom(j)}];
power = 1;
k = j;
while j<length(monom) & monom(j) == monom(j+1)
power = power + 1;
j = j + 1;
%if j == (length(monom)-1)
% j = 5;
%end
end
if power~=1
s = [s '^' num2str(power)];
end
end
j = j + 1;
end
function s = num2str2(x)
s = num2str(full(x));
if isequal(s,'1')
s = '';
end
if isequal(s,'-1')
s = '-';
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -