📄 binmodel.m
字号:
function varargout = binmodel(varargin)
%BINMODEL Converts nonlinear expression to linear binary model
%
% [plinear1,..,plinearN,F] = BINMODEL(p1,...,pN) is used to convert
% nonlinear expressions involving binary variables to the correponding
% linear model, using auxilliary variables and constraints
%
% See also BINARY, BINVAR, SOLVESDP
% Author Johan L鰂berg
% $Id: binmodel.m,v 1.2 2006/11/08 13:36:29 joloef Exp $
all_linear = 1;
p = [];
for i = 1:nargin
[n(i),m(i)] = size(varargin{i});
p = [p;varargin{i}(:)];
if degree(varargin{i}) > 1
all_linear = 0;
end
end
if all_linear
varargout = varargin;
vararhout{end+1} = F;
return
end
plinear = p;
F = set([]);
% Get stuff
vars = getvariables(p);
basis = getbase(p);
[mt,vt] = yalmip('monomtable');
% These are the original monomials
vecvar = recover(vars);
linear = find(vt(vars) == 0);
quadratic = find(vt(vars) == 2);
bilinear = find(vt(vars) == 1);
polynomial = find(vt(vars) == 3);
% replace x^2 with x
if ~isempty(quadratic)
[ii,jj] = find(mt(vars(quadratic),:));
z_quadratic = recover(jj);
% vecvar(quadratic) = recover(jj);
else
quadratic = [];
z_quadratic = [];
end
% replace x*y with z, x>z, x>z, 1+z>x+y
if ~isempty(bilinear)
z_bilinear = sdpvar(length(bilinear),1);
[jj,ii] = find(mt(vars(bilinear),:)');
x = recover(jj(1:2:end));
y = recover(jj(2:2:end));
F = F + set(x >= z_bilinear) + set(y >= z_bilinear) + set(1+z_bilinear > x + y) + set(0 <= z_bilinear <= 1);
% vecvar(bilinear) = z_bilinear;
else
bilinear = [];
z_bilinear = [];
end
%general case a bit slower
if ~isempty(polynomial)
z_polynomial = sdpvar(length(polynomial),1);
xvar = [];
yvar = [];
for i = 1:length(z_polynomial)
[ii,jj] = find(mt(vars(polynomial(i)),:));
x = recover(jj);
F = F + set(x >= z_polynomial(i)) + set(length(x)-1+z_polynomial(i) > sum(x)) + set(0 <= z_polynomial(i) <= 1);
end
% vecvar(polynomial) = z_polynomial;
else
z_polynomial = [];
polynomial = [];
end
% ii = [linear quadratic bilinear polynomial];
% jj = ones(length(ii),1);
% kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial];
% sparse([linear quadratic bilinear polynomial],1,[recover(vars(linear));z_quadratic;z_bilinear;z_polynomial])
ii = [linear quadratic bilinear polynomial];
jj = ones(length(ii),1);
kk = [recover(vars(linear));z_quadratic;z_bilinear;z_polynomial];
vecvar = sparse(ii(:),jj(:),kk(:));
% Recover the whole thing
plinear = basis*[1;vecvar];
% And now get the original sizes
top = 1;
for i = 1:nargin
varargout{i} = reshape(plinear(top:top+n(i)*m(i)-1),n(i),m(i));
top = top + n(i)*m(i);
end
varargout{end+1} = F;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -