📄 ncvar.m
字号:
function sys = sdpvar(varargin)
%SDPVAR Create symbolic decision variable
%
% You can create a sdpvar variable by:
% X = SDPVAR(n) Symmetric nxn matrix
% X = SDPVAR(n,n) Symmetric nxn matrix
% X = SDPVAR(n,m) Full nxm matrix (n~=m)
%
% Definition of multiple scalars can be simplified
% SDPVAR x y z w
%
% The parametrizations supported are
% X = SDPVAR(n,n,'full') Full nxn matrix
% X = SDPVAR(n,n,'symmetric') Symmetric nxn matrix
% X = SDPVAR(n,n,'toeplitz') Symmetric Toeplitz
% X = SDPVAR(n,n,'hankel') Symmetric Hankel
% X = SDPVAR(n,n,'skew') Skew-symmetric
%
% The letters 'sy','f','ha', 't' and 'sk' are searched for in the third argument
% hence sdpvar(n,n,'toeplitz') gives the same result as sdpvar(n,n,'t')
%
% Only square Toeplitz and Hankel matries are supported
%
% A scalar is defined as a 1x1 matrix
%
% Higher-dimensional matrices are also supported, although this currently
% is an experimental feature with limited use. The type flag applies to
% the lowest level slice.
%
% X = SDPVAR(n,n,n,'full') Full nxnxn matrix
%
% In addition to the matrix type, a fourth argument
% can be used to obtain a complex matrix. All the
% matrix types above apply to a complex matrix, and
% in addition a Hermitian type is added
%
% X = SDPVAR(n,n,'hermitian','complex') Complex Hermitian nxn matrix (X=X'=conj(X.'))
%
% The other types are obtained as above
% X = SDPVAR(n,n,'symmetric','complex') Complex symmetric nxn matrix (X=X.')
% X = SDPVAR(n,n,'full','complex') Complex full nxn matrix
% ... and the same for Toeplitz, Hankel and skew-symmetric
%
% See also @SDPVAR/SET, INTVAR, BINVAR, methods('sdpvar'), SEE
% Author Johan L鰂berg
% $Id: ncvar.m,v 1.4 2006/08/28 13:48:38 joloef Exp $
superiorto('sdpvar');
if nargin==0
return
end
if isstruct(varargin{1})
sys = class(varargin{1},'ncvar');
return
end
% To speed up dualization, we keep track of primal SDP cones
% [0 0] : Nothing known (cleared in some operator, or none-cone to start with)
% [1 0] : Primal cone
% [1 1] : Primal cone + DOUBLE
% [1 2 x] : Primal cone + SDPVAR
% [-1 1] : -Primal cone + DOUBLE
% [-1 2 x] : -Primal cone + SDPVAR
conicinfo = [0 0];
if ischar(varargin{1})
switch varargin{1}
case 'clear'
disp('Obsolete comand');
return
case 'nvars'
sys = yalmip('nvars');%THIS IS OBSAOLETE AND SHOULD NOT BE USED
return
otherwise
n = length(varargin);
varnames = varargin;
for k = 1:n
varcmd{k}='(1,1)';
lp=findstr(varargin{k},'(');
rp=findstr(varargin{k},')');
if isempty(lp) & isempty(rp)
if ~isvarname(varargin{k})
error('Not a valid variable name.')
end
else
if (~isempty(lp))&(~isempty(rp))
if min(lp)<max(rp)
varnames{k} = varargin{k}(1:lp-1);
varcmd{k}=varargin{k}(lp:rp);
else
error('Not a valid variable name.')
end
else
error('Not a valid variable name.')
end
end
end
for k = 1:n
if isequal(varnames{k},'i') | isequal(varnames{k},'j')
if length(dbstack) == 1
assignin('caller',varnames{k},eval(['sdpvar' varcmd{k}]));
else
error(['Due to a bug in MATLAB, use ' varnames{k} ' = sdpvar' varcmd{k} ' instead.']);
end
else
assignin('caller',varnames{k},eval(['ncvar' varcmd{k}]));
end
end
return
end
end
% *************************************************************************
% Maybe new NDSDPVAR syntax
% *************************************************************************
if nargin > 2 & isa(varargin{3},'double') & ~isempty(varargin{3})
sys = ndsdpvar(varargin{:});
return
end
% Supported matrix types
% - symm
% - full
% - skew
% - hank
% - toep
switch nargin
case 1 %Bug in MATLAB 5.3!! sdpvar called from horzcat!!!!????
if isempty(varargin{1})
sys = varargin{1};
return
end
if isa(varargin{1},'sdpvar')
sys = varargin{1};
sys.typeflag = 0;
return
end
n = varargin{1};
m = varargin{1};
if sum(n.*m)==0
sys = zeros(n,m);
return
end
if (n==m)
matrix_type = 'symm';
nvar = sum(n.*(n+1)/2);
conicinfo = [1 0];
else
matrix_type = 'full';
nvar = sum(n.*m);
end
case 2
n = varargin{1};
m = varargin{2};
if length(n)~=length(m)
error('The dimensions must have the same lengths')
end
if sum(n.*m)==0
sys = zeros(n,m);
return
end
if (n==m)
matrix_type = 'symm';
nvar = sum(n.*(n+1)/2);
conicinfo = [1 0];
else
matrix_type = 'full';
nvar = sum(n.*m);
end
case {3,4}
n = varargin{1};
m = varargin{2};
if sum(n.*m)==0
sys = zeros(n,m);
return
end
% Check for complex or real
if (nargin == 4)
if isempty(varargin{4})
varargin{4} = 'real';
else
if ~ischar(varargin{4})
help sdpvar
error('Fourth argument should be ''complex'' or ''real''')
end
end
index_cmrl = strmatch(varargin{4},{'real','complex'});
if isempty(index_cmrl)
error('Fourth argument should be ''complex'' or ''real''. See help above')
end
else
if ~ischar(varargin{3})
help sdpvar
error('Third argument should be ''symmetric'', ''full'', ''hermitian'',...See help above')
end
index_cmrl = 1;
end;
if isempty(varargin{3})
if n==m
index_type = 7; %Default symmetric
else
index_type = 4;
end
else
if ~isempty(strmatch(varargin{3},{'complex','real'}))
% User had third argument as complex or real
error(['Third argument should be ''symmetric'', ''full'', ''toeplitz''... Maybe you meant sdpvar(n,n,''full'',''' varargin{3} ''')'])
end
index_type = strmatch(varargin{3},{'toeplitz','hankel','symmetric','full','rhankel','skew','hermitian'});
end
if isempty(index_type)
error(['Matrix type "' varargin{3} '" not supported'])
else
switch index_type+100*(index_cmrl-1)
case 1
if n~=m
error('Toeplitz matrix must be square')
else
matrix_type = 'toep';
nvar = n;
end
case 2
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'hank';
nvar = n;
end
case 3
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symm';
nvar = sum(n.*(n+1)/2);
end
case 4
matrix_type = 'full';
nvar = sum(n.*m);
if nvar==1
matrix_type = 'symm';
end
case 5
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'rhankel';
nvar = 2*n-1;
end
case 6
if n~=m
error('Skew symmetric matrix must be square')
else
matrix_type = 'skew';
nvar = (n*(n+1)/2)-n;
end
case 7
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symm';
nvar = n*(n+1)/2;
end
case 101
if n~=m
error('Toeplitz matrix must be square')
else
matrix_type = 'toep complex';
nvar = 2*n;
end
case 102
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'hank complex';
nvar = (2*n);
end
case 103
if n~=m
error('Symmetric matrix must be square')
else
matrix_type = 'symm complex';
nvar = 2*n*(n+1)/2;
end
case 104
matrix_type = 'full complex';
nvar = 2*n*m;
if nvar==1
matrix_type = 'symm complex';
end
case 105
if n~=m
error('Hankel matrix must be square')
else
matrix_type = 'rhankel complex';
nvar = 2*(2*n-1);
end
case 106
if n~=m
error('Skew symmetric matrix must be square')
else
matrix_type = 'skew complex';
nvar = 2*((n*(n+1)/2)-n);
end
case 107
if n~=m
error('Hermitian matrix must be square')
else
matrix_type = 'herm complex';
nvar = n*(n+1)/2+(n*(n+1)/2-n);
end
otherwise
error('Bug! Report!');
end
end
case 5 % Fast version for internal use
sys.basis = varargin{5};
sys.lmi_variables=varargin{4};
sys.dim(1) = varargin{1};
sys.dim(2) = varargin{2};
sys.typeflag = 0;
sys.savedata = [];
sys.extra = [];
sys.extra.expanded = [];
sys.conicinfo = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -