⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cutsdp.m

📁 optimization toolbox
💻 M
字号:
function output = cutsdp(p)
% CUTSDP
%
% See also SOLVESDP, BNB, BINVAR, INTVAR, BINARY, INTEGER, LMI

% Author Johan L鰂berg
% $Id: cutsdp.m,v 1.5 2006/05/23 21:55:59 joloef Exp $

% *************************************************************************
%% INITIALIZE DIAGNOSTICS IN YALMIP
% *************************************************************************
bnbsolvertime = clock;
showprogress('Cutting plane solver started',p.options.showprogress);

% *************************************************************************
%% If we want duals, we may not extract bounds. However, bounds must be
% extracted in discrete problems.
% *************************************************************************
if p.options.cutsdp.recoverdual
    warning('Dual recovery not implemented yet in CUTSDP')
end

% *************************************************************************
%% Define infinite bounds
% *************************************************************************
if isempty(p.ub)
    p.ub = repmat(inf,length(p.c),1);
end
if isempty(p.lb)
    p.lb = repmat(-inf,length(p.c),1);
end

% *************************************************************************
%% ADD CONSTRAINTS 0<x<1 FOR BINARY
% *************************************************************************
if ~isempty(p.binary_variables)
    p.ub(p.binary_variables) =  min(p.ub(p.binary_variables),1);
    p.lb(p.binary_variables) =  max(p.lb(p.binary_variables),0);
end

% *************************************************************************
%% Extract better bounds from model
% *************************************************************************
if ~isempty(p.F_struc)
    [lb,ub,used_rows] = findulb(p.F_struc,p.K);
    if ~isempty(used_rows)
        lower_defined = find(~isinf(lb));
        if ~isempty(lower_defined)
            p.lb(lower_defined) = max(p.lb(lower_defined),lb(lower_defined));
        end
        upper_defined = find(~isinf(ub));
        if ~isempty(upper_defined)
            p.ub(upper_defined) = min(p.ub(upper_defined),ub(upper_defined));
        end
        p.F_struc(p.K.f+used_rows,:)=[];
        p.K.l = p.K.l - length(used_rows);
    end
end

% *************************************************************************
%% ADD CONSTRAINTS 0<x<1 FOR BINARY
% *************************************************************************
if ~isempty(p.binary_variables)
    p.ub(p.binary_variables) =  min(p.ub(p.binary_variables),1);
    p.lb(p.binary_variables) =  max(p.lb(p.binary_variables),0);
end

p.ub = min(p.ub,p.options.cutsdp.variablebound');
p.lb = max(p.lb,-p.options.cutsdp.variablebound');

% *************************************************************************
%% PRE-SOLVE (nothing fancy coded)
% *************************************************************************
if isempty(find(isinf([p.ub;p.lb]))) & p.K.l>0
    [p.lb,p.ub] = tightenbounds(-p.F_struc(1+p.K.f:p.K.f+p.K.l,2:end),p.F_struc(1+p.K.f:p.K.f+p.K.l,1),p.lb,p.ub,p.integer_variables);
end

% *************************************************************************
%% PERTURBATION OF LINEAR COST
% *************************************************************************
p.corig = p.c;
if nnz(p.Q)~=0
    g = randn('seed');
    randn('state',1253); %For my testing, I keep this the same...
    % This perturbation has to be better. Crucial for many real LP problems
    p.c = (p.c).*(1+randn(length(p.c),1)*1e-4);
    randn('seed',g);
end

% *************************************************************************
%% We don't need this
% *************************************************************************
p.options.savesolverinput  = 0;
p.options.savesolveroutput = 0;

% *************************************************************************
%% Display logics
% 0 : Silent
% 1 : Display cut progress
% 2 : Display node solver prints
% *************************************************************************
switch max(min(p.options.verbose,3),0)
    case 0
        p.options.cutsdp.verbose = 0;
    case 1
        p.options.cutsdp.verbose = 1;
        p.options.verbose = 0;
    case 2
        p.options.cutsdp.verbose = 2;
        p.options.verbose = 0;
    case 3
        p.options.cutsdp.verbose = 2;
        p.options.verbose = 1;
    otherwise
        p.options.cutsdp.verbose = 0;
        p.options.verbose = 0;
end

% *************************************************************************
%% START CUTTING
% *************************************************************************
[x_min,solved_nodes,lower,feasible,D_struc] = cutting(p);
%% --

% *************************************************************************
%% CREATE SOLUTION
% *************************************************************************
output.problem = 0;
if ~feasible
    output.problem = 1;
end
if solved_nodes == p.options.cutsdp.maxiter
    output.problem = 3;
end
output.solved_nodes = solved_nodes;
output.Primal       = x_min;
output.Dual = D_struc;
output.Slack = [];
output.solverinput  = 0;
output.solveroutput =[];
output.solvertime   = etime(clock,bnbsolvertime);
%% --

function [x,solved_nodes,lower,feasible,D_struc] = cutting(p)

% *************************************************************************
%% Sanity check
% *************************************************************************
if any(p.lb>p.ub)
    x = zeros(length(p.c),1);
    solved_nodes = 0;
    lower = inf;
    feasible = 0;
    D_struc = [];
    return
end

% *************************************************************************
%% Create function handle to solver
% *************************************************************************
cutsolver = p.solver.cutsolver.call;

% *************************************************************************
%% Create copy of model without
%  the SDP part
% *************************************************************************
p_lp = p;
p_lp.F_struc = p_lp.F_struc(1:p.K.l+p.K.f,:);
p_lp.K.s = 0;

% *************************************************************************
%% DISPLAY HEADER
% *************************************************************************
if p.options.cutsdp.verbose
    disp('* Starting YALMIP cutting plane for MISDP based on MILP');
    disp(['* Lower solver   : ' p.solver.cutsolver.tag]);
    disp(['* Max iterations : ' num2str(p.options.cutsdp.maxiter)]);
end

if p.options.bnb.verbose;            disp(' Node       Infeasibility.     Lower    LP cuts');end;

%% Initialize diagnostic
infeasibility = -inf;
solved_nodes = 0;
feasible = 1;
lower = -inf;
saveduals = 1;

% *************************************************************************
%% Add diagonal cuts to begin with
% *************************************************************************
savedCuts = [];
savedIndicies = [];
if p.K.s(1)>0
    top = p.K.f+p.K.l+1;
    for i = 1:length(p.K.s)
        n = p.K.s(i);
        newF=[];
        for m = 1:p.K.s(i)
            d = eyev(p.K.s(i),m);
            index = (1+(m-1)*(p.K.s(i)+1));
            newF = [newF;p.F_struc(top+index-1,:)];
        end
        % Clean
        newF(abs(newF)<1e-12) = 0;
        keep=find(any(newF(:,2:end),2));
        newF = newF(keep,:);

        p_lp.F_struc = [p_lp.F_struc;newF];
        p_lp.K.l = p_lp.K.l + size(newF,1);
        top = top+n^2;
    end
end

goon = 1;
rr = p_lp.integer_variables;
rb = p_lp.binary_variables;
only_solvelp = 0;
pplot = 0;

% *************************************************************************
% Crude lower bound
% FIX for quadratic case
% *************************************************************************
lower = 0;
if nnz(p.Q) == 0
    for i = 1:length(p.c)
        if p.c(i)>0
            if isinf(p.lb(i))
                lower = -inf;
                break
            else
                lower = lower + p.c(i)*p.lb(i);
            end
        elseif p.c(i)<0
            if isinf(p.ub(i))
                lower = -inf;
                break
            else
                lower = lower + p.c(i)*p.ub(i);
            end
        end
    end
end
%lower = sum(sign(p.c).*(p.lb));
if isinf(lower) | nnz(p.Q)~=0
    lower = -1e6;
end

% *************************************************************************
% Experimental stuff for variable fixing
% *************************************************************************
if p.options.cutsdp.nodefix & (p.K.s(1)>0)
    top=1+p.K.f+p.K.l+sum(p.K.q);
    for i=1:length(p.K.s)
        n=p.K.s(i);
        for j=1:size(p.F_struc,2)-1;
            X=full(reshape(p.F_struc(top:top+n^2-1,j+1),p.K.s(i),p.K.s(i)));
            X=(X+X')/2;
            v=real(eig(X+sqrt(eps)*eye(length(X))));
            if all(v>=0)
                sdpmonotinicity(i,j)=-1;
            elseif all(v<=0)
                sdpmonotinicity(i,j)=1;
            else
                sdpmonotinicity(i,j)=nan;
            end
        end
        top=top+n^2;
    end
else
    sdpmonotinicity=[];
end

while goon

    % Add lower bound
    if ~isinf(lower)
        p_lp.F_struc = [p_lp.F_struc;-lower p_lp.c'];
        p_lp.K.l = p_lp.K.l + 1;
    end

    if p.options.cutsdp.nodetight
        % Extract LP part Ax<=b
        A = -p_lp.F_struc(p_lp.K.f + (1:p_lp.K.l),2:end);
        b = p_lp.F_struc(p_lp.K.f + (1:p_lp.K.l),1);
        c = p_lp.c;
        % Tighten bounds and find redundant constraints
        [p_lp.lb,p_lp.ub,redundant,pss] = milppresolve(A,b,p_lp.lb,p_lp.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1));
        A(redundant,:) = [];
        b(redundant) = [];
        p_lp.F_struc(p_lp.K.f+redundant,:) = [];
        p_lp.K.l = p_lp.K.l-length(redundant);
    end

    if p.options.cutsdp.nodefix
        % Try to find variables to fix w.l.o.g
        [fix_up,fix_down] = presolve_fixvariables(A,b,c,p_lp.lb,p_lp.ub,sdpmonotinicity);
        p_lp.lb(fix_up)   = p_lp.ub(fix_up);
        p_lp.ub(fix_down) = p_lp.lb(fix_down);
        while ~(isempty(fix_up) & isempty(fix_down))
            [p_lp.lb,p_lp.ub,redundant,pss] = milppresolve(A,b,p_lp.lb,p_lp.ub,p.integer_variables,p.binary_variables,ones(length(p.lb),1));
            A(redundant,:) = [];
            b(redundant) = [];
            p_lp.F_struc(p_lp.K.f+redundant,:) = [];
            p_lp.K.l = p_lp.K.l-length(redundant);
            fix_up = [];
            fix_down = [];
            % Try to find variables to fix w.l.o.g
            [fix_up,fix_down] = presolve_fixvariables(A,b,c,p_lp.lb,p_lp.ub,sdpmonotinicity);
            p_lp.lb(fix_up)   = p_lp.ub(fix_up);
            p_lp.ub(fix_down) = p_lp.lb(fix_down);
        end
    end


    output = feval(cutsolver,p_lp);

    % Remove lower bound (avoid accumulating them)
    if ~isinf(lower)
        p_lp.K.l = p_lp.K.l - 1;
        p_lp.F_struc = p_lp.F_struc(1:end-1,:);
    end

    if output.problem == 1 | output.problem == 12
        % LP relaxation was infeasible, hence problem is infeasible
        feasible = 0;
        lower = inf;
        goon = 0;
        x = zeros(length(p.c),1);
        lower = inf;
    else
        % Relaxed solution
        x = output.Primal;
        lower = p.f+p.c'*x+x'*p.Q*x;

        infeasibility = 0;
        if p.K.s(1)>0
            % Add cuts
            top = p.K.f+p.K.l+1;
            for i = 1:1:length(p.K.s)
                n = p.K.s(i);
                X = p.F_struc(top:top+n^2-1,:)*[1;x];
                X = reshape(X,n,n);
                Y = randn(n,n);
                newcuts = 1;
                newF = zeros(n,size(p.F_struc,2));
                [d,v] = eig(X);
                infeasibility = min(infeasibility,min(diag(v)));
                dummy=[];
                newF = [];
                if infeasibility<0
                    [ii,jj] = sort(diag(v));
                    for m = jj(1:min(length(jj),p.options.cutsdp.cutlimit))'%find(diag(v<0))%1:1%length(v)
                        if v(m,m)<0
                            bA =  d(:,m)'*(kron(d(:,m),speye(n))'*p.F_struc(top:top+n^2-1,:));
                            b = bA(:,1);
                            A = -bA(:,2:end);
                            newF = [newF;b -A];
                            %f = b-floor(b);
                            %fj = A - floor(A);
                            %A = floor(A) + max((fj-f),0)./(1-f);
                            %b = floor(b);
                            %newF = [newF;b -A];
                            newcuts = newcuts + 1;
                        end
                    end
                end
                newF(abs(newF)<1e-12) = 0;
                keep=find(any(newF(:,2:end),2));
                newF = newF(keep,:);
                if size(newF,1)>0
                    p_lp.F_struc = [p_lp.F_struc;newF];
                    p_lp.K.l = p_lp.K.l + size(newF,1);
                    [i,j] = sort(p_lp.F_struc*[1;x]);
                end
                top = top+n^2;
            end
        end
      %    res = find(p_lp.F_struc*[1;x] > mean(abs(p_lp.F_struc*[1;x])));
      %    p_lp.F_struc(res,:) = [];
      %    p_lp.K.l = p_lp.K.l-length(res);
        goon = infeasibility <= p.options.cutsdp.feastol;
        goon = goon & feasible;
        goon = goon & (solved_nodes < p.options.cutsdp.maxiter-1);
    end

    solved_nodes = solved_nodes + 1;
    if p.options.cutsdp.verbose;fprintf(' %4.0f :      %12.3E      %12.3E      %2.0f\n',solved_nodes,infeasibility,lower,p_lp.K.l-p.K.l);end
end

D_struc = [];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -