📄 lpbmitighten.m
字号:
% *************************************************************************
% Bound strengthening, here is where we actually solve LPs
% *************************************************************************
function [p,feasible,lower] = lpbmitighten(p,lower,upper,lpsolver,xmin)
% Construct problem with only linear terms
% and add cuts from lower/ upper bounds
p_test = p;
p_test.F_struc = p.lpcuts;
p_test.K.l = size(p.lpcuts,2);
p_test.K.f = 0;
p_test.K.s = 0;
p_test.K.q = 0;
if ~isnan(lower)
p_test.F_struc = [-(p.lower-abs(p.lower)*0.01)+p.f p_test.c';p_test.F_struc];
if p.diagonalized
n = length(p.c)/2;
f = p.f;
c = p.c(1:n);
d = p.c(n+1:end);
neg = find(d<0);
if length(neg)>0
f = f + sum(d(neg).*xmin(neg).^2 - 2*d(neg).*xmin(neg).^2);
c(neg) = c(neg) + 2*d(neg).*xmin(neg);
d(neg) = 0;
p_test.F_struc = [-(p.lower-abs(p.lower)*0.01)+f c' d';p_test.F_struc];
end
end
end
if upper < inf
if p.diagonalized
n = length(p.c)/2;
f = p.f;
c = p.c(1:n);
d = p.c(n+1:end);
pos = find(d>0);
if length(pos)>0
f = f + sum(d(pos).*xmin(pos).^2 - 2*d(pos).*xmin(pos).^2);
c(pos) = c(pos) + 2*d(pos).*xmin(pos);
d(pos) = 0;
p_test.F_struc = [upper+abs(upper)*0.01-f -c' -d';p_test.F_struc];
p_test.F_struc = [upper+abs(upper)*0.01-p.f -p_test.c';p_test.F_struc];
end
end
p_test.F_struc = [upper+abs(upper)*0.01-p.f -p_test.c';p_test.F_struc];
end
if ~isempty(p.bilinears)
p_test = addmcgormick(p_test);
end
%aa = p_test.F_struc(7,:);;
%p_test.F_struc = [];%p_test.F_struc(7,:);
p_test.K.l = size(p_test.F_struc,1);
p_test.F_struc = [p.F_struc(1:1:p.K.f,:);p_test.F_struc];
p_test.K.f = p.K.f;
feasible = 1;
% Perform reduction on most violating approximations at current solution
if p.options.bmibnb.lpreduce ~= 1
n = ceil(max(p.options.bmibnb.lpreduce*length(p_test.linears),1));
res = zeros(length(p.lb),1);
for i = 1:size(p.bilinears,1)
res(p.bilinears(i,2)) = res(p.bilinears(i,2)) + abs( p.x0(p.bilinears(i,1))-p.x0(p.bilinears(i,2)).*p.x0(p.bilinears(i,3)));
res(p.bilinears(i,3)) = res(p.bilinears(i,3)) + abs( p.x0(p.bilinears(i,1))-p.x0(p.bilinears(i,2)).*p.x0(p.bilinears(i,3)));
end
res = res(p.linears);
[ii,jj] = sort(abs(res));
jj = jj(end-n+1:end);
else
jj=1:length(p_test.linears);
end
j = 1;
while feasible & j<=length(jj)
i = p_test.linears(jj(j));
if abs(p.ub(i)-p.lb(i)>0.1)
p_test.c = eyev(length(p_test.c),i);
output = feval(lpsolver,p_test);
if output.problem == 0
if p_test.lb(i) < output.Primal(i)-1e-5
p_test.lb(i) = output.Primal(i);
p_test = updateonenonlinearbound(p_test,i);
end
p_test.c = -p_test.c;
output = feval(lpsolver,p_test);
if output.problem == 0
if p_test.ub(i) > output.Primal(i)+1e-5
p_test.ub(i) = output.Primal(i);
p_test = updateonenonlinearbound(p_test,i);
end
end
if output.problem == 1
feasible = 0;
end
end
if output.problem == 1
feasible = 0;
end
end
j = j + 1;
end
p_test = clean_bounds(p_test);
p.lb = p_test.lb;
p.ub = p_test.ub;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -