📄 chapmanorderednamecompoundsimilarity.java
字号:
/**
* SimMetrics - SimMetrics is a java library of Similarity or Distance
* Metrics, e.g. Levenshtein Distance, that provide float based similarity
* measures between String Data. All metrics return consistant measures
* rather than unbounded similarity scores.
*
* Copyright (C) 2005 Sam Chapman - Open Source Release v1.1
*
* Please Feel free to contact me about this library, I would appreciate
* knowing quickly what you wish to use it for and any criticisms/comments
* upon the SimMetric library.
*
* email: s.chapman@dcs.shef.ac.uk
* www: http://www.dcs.shef.ac.uk/~sam/
* www: http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
*
* address: Sam Chapman,
* Department of Computer Science,
* University of Sheffield,
* Sheffield,
* S. Yorks,
* S1 4DP
* United Kingdom,
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package uk.ac.shef.wit.simmetrics.similaritymetrics;
import uk.ac.shef.wit.simmetrics.tokenisers.InterfaceTokeniser;
import uk.ac.shef.wit.simmetrics.tokenisers.TokeniserWhitespace;
import uk.ac.shef.wit.simmetrics.similaritymetrics.AbstractStringMetric;
import java.io.Serializable;
import java.util.Vector;
/**
* Description: ChapmanOrderedNameCompoundSimilarity tests similarity upon the most similar in terms of token based
* names where the later names are valued higher than earlier names. Surnames are less flexible than
*
* @author Sam Chapman, NLP Group, Sheffield Uni, UK
* (<a href="mailto:sam@dcs.shef.ac.uk">email</a>, <a href="http://www.dcs.shef.ac.uk/~sam/">website</a>)
* <p/>
* Date: 08-Dec-2005
* Time: 16:50:55
*/
public final class ChapmanOrderedNameCompoundSimilarity extends AbstractStringMetric implements Serializable {
/**
* a constant for calculating the estimated timing cost.
*/
private final float ESTIMATEDTIMINGCONST = 0.026571428571428571428571428571429f;
/**
* private tokeniser for tokenisation of the query strings.
*/
final InterfaceTokeniser tokeniser;
/**
* private string metric allowing internal metric to be composed.
*/
private final AbstractStringMetric internalStringMetric1 = new Soundex();
/**
* private string metric allowing internal metric to be composed.
*/
private final AbstractStringMetric internalStringMetric2 = new SmithWaterman();
/**
* constructor - default (empty).
*/
public ChapmanOrderedNameCompoundSimilarity() {
tokeniser = new TokeniserWhitespace();
}
/**
* constructor.
*
* @param tokeniserToUse - the tokeniser to use should a different tokeniser be required
*/
public ChapmanOrderedNameCompoundSimilarity(final InterfaceTokeniser tokeniserToUse) {
tokeniser = tokeniserToUse;
}
/**
* returns the string identifier for the metric.
*
* @return the string identifier for the metric
*/
public String getShortDescriptionString() {
return "ChapmanOrderedNameCompoundSimilarity";
}
/**
* returns the long string identifier for the metric.
*
* @return the long string identifier for the metric
*/
public String getLongDescriptionString() {
return "Implements the Chapman Ordered Name Compound Similarity algorithm whereby terms are matched and tested against the standard soundex algorithm - this is intended to provide a better rating for lists of proper names.";
}
/**
* gets a div class xhtml similarity explaining the operation of the metric.
*
* @param string1 string 1
* @param string2 string 2
*
* @return a div class html section detailing the metric operation.
*/
public String getSimilarityExplained(String string1, String string2) {
//todo this should explain the operation of a given comparison
return null; //To change body of implemented methods use File | Settings | File Templates.
}
/**
* gets the estimated time in milliseconds it takes to perform a similarity timing.
*
* @param string1 string 1
* @param string2 string 2
*
* @return the estimated time in milliseconds taken to perform the similarity measure
*/
public float getSimilarityTimingEstimated(final String string1, final String string2) {
//timed millisecond times with string lengths from 1 + 50 each increment
//0.08 2.26 8.16 16.92 29 51 67.67 93.67 117 156.5 187.5 234 266 312 375 422 485 547 609 656 766 828 906 1000 1078 1157 1265 1360 1453 1562 1688 1781 1891 2031 2094 2219 2422 2532 2656 2812 2938 3109 3250 3407 3562 3750 3907 4062 4250 4422 4625 4797 4985 5188 5390 5578 5782 5984 6204 6437
final float str1Tokens = tokeniser.tokenize(string1).size();
final float str2Tokens = tokeniser.tokenize(string2).size();
return (tokeniser.tokenize(string1).size() + tokeniser.tokenize(string2).size()) * ((str1Tokens+str2Tokens) * ESTIMATEDTIMINGCONST);
}
/**
* gets the similarity of the two strings using a shifted weighting where the
* latter tokens compared are more important than earlier ones.
*
* @param string1
* @param string2
* @return a value between 0-1 of the similarity
*/
public final float getSimilarity(final String string1, final String string2) {
//split the strings into tokens for comparison
final Vector str1Tokens = tokeniser.tokenize(string1);
final Vector str2Tokens = tokeniser.tokenize(string2);
int str1TokenNum = str1Tokens.size();
int str2TokenNum = str2Tokens.size();
int minTokens = Math.min(str1TokenNum, str2TokenNum);
float SKEW_AMMOUNT = 1.0f;
float sumMatches = 0.0f;
for (int i = 1; i <= minTokens; i++) {
float strWeightingAdjustment = ((1.0f/minTokens)+(((((minTokens-i)+0.5f)-(minTokens/2.0f))/minTokens)*SKEW_AMMOUNT*(1.0f/minTokens)));
final String sToken = (String) str1Tokens.get(str1TokenNum-i);
final String tToken = (String) str2Tokens.get(str2TokenNum-i);
final float found1 = internalStringMetric1.getSimilarity(sToken, tToken);
final float found2 = internalStringMetric2.getSimilarity(sToken, tToken);
sumMatches += ((0.5f * (found1+found2)) * strWeightingAdjustment);
}
return sumMatches;
}
/**
* gets the un-normalised similarity measure of the metric for the given strings.
*
* @param string1
* @param string2
* @return returns the score of the similarity measure (un-normalised)
*/
public float getUnNormalisedSimilarity(String string1, String string2) {
//todo check this is valid before use mail sam@dcs.shef.ac.uk if problematic
return getSimilarity(string1, string2);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -