📄 mongeelkan.java
字号:
/**
* SimMetrics - SimMetrics is a java library of Similarity or Distance
* Metrics, e.g. Levenshtein Distance, that provide float based similarity
* measures between String Data. All metrics return consistant measures
* rather than unbounded similarity scores.
*
* Copyright (C) 2005 Sam Chapman - Open Source Release v1.1
*
* Please Feel free to contact me about this library, I would appreciate
* knowing quickly what you wish to use it for and any criticisms/comments
* upon the SimMetric library.
*
* email: s.chapman@dcs.shef.ac.uk
* www: http://www.dcs.shef.ac.uk/~sam/
* www: http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
*
* address: Sam Chapman,
* Department of Computer Science,
* University of Sheffield,
* Sheffield,
* S. Yorks,
* S1 4DP
* United Kingdom,
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package uk.ac.shef.wit.simmetrics.similaritymetrics;
import uk.ac.shef.wit.simmetrics.tokenisers.InterfaceTokeniser;
import uk.ac.shef.wit.simmetrics.tokenisers.TokeniserWhitespace;
import java.io.Serializable;
import java.util.Vector;
/**
* Package: uk.ac.shef.wit.simmetrics.similaritymetrics.mongeelkan
* Description: uk.ac.shef.wit.simmetrics.similaritymetrics.mongeelkan implements a
* Date: 31-Mar-2004
* Time: 17:19:55
* @author Sam Chapman <a href="http://www.dcs.shef.ac.uk/~sam/">Website</a>, <a href="mailto:sam@dcs.shef.ac.uk">Email</a>.
* @version 1.1
*/
public class MongeElkan extends AbstractStringMetric implements Serializable {
/**
* a constant for calculating the estimated timing cost.
*/
private final float ESTIMATEDTIMINGCONST = 0.0344f;
/**
* private tokeniser for tokenisation of the query strings.
*/
final InterfaceTokeniser tokeniser;
/**
* private string metric allowing internal metric to be composed.
*/
private final AbstractStringMetric internalStringMetric;
/**
* gets a div class xhtml similarity explaining the operation of the metric.
*
* @param string1 string 1
* @param string2 string 2
*
* @return a div class html section detailing the metric operation.
*/
public String getSimilarityExplained(String string1, String string2) {
//todo this should explain the operation of a given comparison
return null; //To change body of implemented methods use File | Settings | File Templates.
}
/**
* constructor - default (empty).
*/
public MongeElkan() {
tokeniser = new TokeniserWhitespace();
internalStringMetric = new SmithWatermanGotoh();
}
/**
* constructor.
*
* @param tokeniserToUse - the tokeniser to use should a different tokeniser be required
*/
public MongeElkan(final InterfaceTokeniser tokeniserToUse) {
tokeniser = tokeniserToUse;
internalStringMetric = new SmithWatermanGotoh();
}
/**
* constructor.
*
* @param tokeniserToUse - the tokeniser to use should a different tokeniser be required
* @param metricToUse - the string metric to use
*/
public MongeElkan(final InterfaceTokeniser tokeniserToUse, final AbstractStringMetric metricToUse) {
tokeniser = tokeniserToUse;
internalStringMetric = metricToUse;
}
/**
* constructor.
*
* @param metricToUse - the string metric to use
*/
public MongeElkan(final AbstractStringMetric metricToUse) {
tokeniser = new TokeniserWhitespace();
internalStringMetric = metricToUse;
}
/**
* returns the string identifier for the metric.
*
* @return the string identifier for the metric
*/
public String getShortDescriptionString() {
return "MongeElkan";
}
/**
* returns the long string identifier for the metric.
*
* @return the long string identifier for the metric
*/
public String getLongDescriptionString() {
return "Implements the Monge Elkan algorithm providing an matching style similarity measure between two strings";
}
/**
* gets the estimated time in milliseconds it takes to perform a similarity timing.
*
* @param string1 string 1
* @param string2 string 2
*
* @return the estimated time in milliseconds taken to perform the similarity measure
*/
public float getSimilarityTimingEstimated(final String string1, final String string2) {
//timed millisecond times with string lengths from 1 + 50 each increment
//0 5.97 11.94 27.38 50.75 73 109.5 148 195.5 250 297 375 437 500 594 672 781 875 969 1079 1218 1360 1469 1609 1750 1906 2063 2203 2375 2563 2734 2906 3110 3312 3500 3688 3906 4141 4375 4594 4844 5094 5328 5609 5860 6156 6422 6688 6984 7235 7547 7859 8157 8500 8813 9172 9484 9766 10125 10516
final float str1Tokens = tokeniser.tokenize(string1).size();
final float str2Tokens = tokeniser.tokenize(string2).size();
return (((str1Tokens + str2Tokens) * str1Tokens) + ((str1Tokens + str2Tokens) * str2Tokens)) * ESTIMATEDTIMINGCONST;
}
/**
* gets the similarity of the two strings using Monge Elkan.
*
* @param string1
* @param string2
* @return a value between 0-1 of the similarity
*/
public final float getSimilarity(final String string1, final String string2) {
//split the strings into tokens for comparison
final Vector<String> str1Tokens = tokeniser.tokenize(string1);
final Vector<String> str2Tokens = tokeniser.tokenize(string2);
float sumMatches = 0.0f;
float maxFound;
for (Object str1Token : str1Tokens) {
maxFound = 0.0f;
for (Object str2Token : str2Tokens) {
final float found = internalStringMetric.getSimilarity((String) str1Token, (String) str2Token);
if (found > maxFound) {
maxFound = found;
}
}
sumMatches += maxFound;
}
return sumMatches / (float) str1Tokens.size();
}
/**
* gets the un-normalised similarity measure of the metric for the given strings.
*
* @param string1
* @param string2
* @return returns the score of the similarity measure (un-normalised)
*/
public float getUnNormalisedSimilarity(String string1, String string2) {
//todo check this is valid before use mail sam@dcs.shef.ac.uk if problematic
return getSimilarity(string1, string2);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -