⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tcp_in.c

📁 这是基于TI公司的DSP TMS320DM642而开发的TCP/UDP协议
💻 C
📖 第 1 页 / 共 3 页
字号:
        }
      }
      pcb->polltmr = 0;
    }

    /* We go through the ->unsent list to see if any of the segments
       on the list are acknowledged by the ACK. This may seem
       strange since an "unsent" segment shouldn't be acked. The
       rationale is that lwIP puts all outstanding segments on the
       ->unsent list after a retransmission, so these segments may
       in fact have been sent once. */
    /* KJM 13th July 2004
       I don't think is is necessary as we no longer move all unacked
       segments on the unsent queue when performing retransmit */
#if 0
    while (pcb->unsent != NULL &&
      TCP_SEQ_LEQ(ntohl(pcb->unsent->tcphdr->seqno) + TCP_TCPLEN(pcb->unsent),
      ackno) &&
      TCP_SEQ_LEQ(ackno, pcb->snd_max)) {

      next = pcb->unsent;
      pcb->unsent = pcb->unsent->next;
      LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_receive: queuelen %u ... ", (unsigned int)pcb->snd_queuelen));
      pcb->snd_queuelen -= pbuf_clen(next->p);
      tcp_seg_free(next);
      LWIP_DEBUGF(TCP_QLEN_DEBUG, ("%u (after freeing unsent)\n", (unsigned int)pcb->snd_queuelen));
      if (pcb->snd_queuelen != 0) {
//        LWIP_ASSERT("tcp_receive: valid queue length",
          pcb->unacked != NULL || pcb->unsent != NULL);
      }

      if (pcb->unsent != NULL) {
        pcb->snd_nxt = htonl(pcb->unsent->tcphdr->seqno);
      }
    }
#endif
    /* End of ACK for new data processing. */

  
    /* RTT estimation calculations. This is done by checking if the
       incoming segment acknowledges the segment we use to take a
       round-trip time measurement. */
    if (pcb->rttest && TCP_SEQ_LT(pcb->rtseq, ackno)) {
      m = tcp_ticks - pcb->rttest;

  

      /* This is taken directly from VJs original code in his paper */
      m = m - (pcb->sa >> 3);
      pcb->sa += m;
      if (m < 0) {
        m = -m;
      }
      m = m - (pcb->sv >> 2);
      pcb->sv += m;
      pcb->rto = (pcb->sa >> 3) + pcb->sv;

   

      pcb->rttest = 0;
    }
  }

  /* If the incoming segment contains data, we must process it
     further. */
  if (tcplen > 0) {
    /* This code basically does three things:

    +) If the incoming segment contains data that is the next
    in-sequence data, this data is passed to the application. This
    might involve trimming the first edge of the data. The rcv_nxt
    variable and the advertised window are adjusted.

    +) If the incoming segment has data that is above the next
    sequence number expected (->rcv_nxt), the segment is placed on
    the ->ooseq queue. This is done by finding the appropriate
    place in the ->ooseq queue (which is ordered by sequence
    number) and trim the segment in both ends if needed. An
    immediate ACK is sent to indicate that we received an
    out-of-sequence segment.

    +) Finally, we check if the first segment on the ->ooseq queue
    now is in sequence (i.e., if rcv_nxt >= ooseq->seqno). If
    rcv_nxt > ooseq->seqno, we must trim the first edge of the
    segment on ->ooseq before we adjust rcv_nxt. The data in the
    segments that are now on sequence are chained onto the
    incoming segment so that we only need to call the application
    once.
    */

    /* First, we check if we must trim the first edge. We have to do
       this if the sequence number of the incoming segment is less
       than rcv_nxt, and the sequence number plus the length of the
       segment is larger than rcv_nxt. */
    if (TCP_SEQ_LT(seqno, pcb->rcv_nxt)){
      if (TCP_SEQ_LT(pcb->rcv_nxt, seqno + tcplen)) {
        /* Trimming the first edge is done by pushing the payload
           pointer in the pbuf downwards. This is somewhat tricky since
           we do not want to discard the full contents of the pbuf up to
           the new starting point of the data since we have to keep the
           TCP header which is present in the first pbuf in the chain.

           What is done is really quite a nasty hack: the first pbuf in
           the pbuf chain is pointed to by inseg.p. Since we need to be
           able to deallocate the whole pbuf, we cannot change this
           inseg.p pointer to point to any of the later pbufs in the
           chain. Instead, we point the ->payload pointer in the first
           pbuf to data in one of the later pbufs. We also set the
           inseg.data pointer to point to the right place. This way, the
           ->p pointer will still point to the first pbuf, but the
           ->p->payload pointer will point to data in another pbuf.

           After we are done with adjusting the pbuf pointers we must
           adjust the ->data pointer in the seg and the segment
           length.*/

        off = pcb->rcv_nxt - seqno;
        p = inseg.p;
        if (inseg.p->len < off) {
          new_tot_len = inseg.p->tot_len - off;
          while (p->len < off) {
            off -= p->len;
            /* KJM following line changed (with addition of new_tot_len var)
               to fix bug #9076
               inseg.p->tot_len -= p->len; */
            p->tot_len = new_tot_len;
            p->len = 0;
            p = p->next;
          }
          pbuf_header(p, -off);
        } else {
          pbuf_header(inseg.p, -off);
        }
        /* KJM following line changed to use p->payload rather than inseg->p->payload
           to fix bug #9076 */
        inseg.dataptr = p->payload;
        inseg.len -= pcb->rcv_nxt - seqno;
        inseg.tcphdr->seqno = seqno = pcb->rcv_nxt;
      }
      else{
        /* the whole segment is < rcv_nxt */
        /* must be a duplicate of a packet that has already been correctly handled */

        tcp_ack_now(pcb);
      }
    }

    /* The sequence number must be within the window (above rcv_nxt
       and below rcv_nxt + rcv_wnd) in order to be further
       processed. */
    if (TCP_SEQ_GEQ(seqno, pcb->rcv_nxt) &&
        TCP_SEQ_LT(seqno, pcb->rcv_nxt + pcb->rcv_wnd)) {
      if (pcb->rcv_nxt == seqno) {
        /* The incoming segment is the next in sequence. We check if
           we have to trim the end of the segment and update rcv_nxt
           and pass the data to the application. */
#if TCP_QUEUE_OOSEQ
        if (pcb->ooseq != NULL &&
            TCP_SEQ_LEQ(pcb->ooseq->tcphdr->seqno, seqno + inseg.len)) {
          /* We have to trim the second edge of the incoming
             segment. */
          inseg.len = pcb->ooseq->tcphdr->seqno - seqno;
          pbuf_realloc(inseg.p, inseg.len);
        }
#endif /* TCP_QUEUE_OOSEQ */

        tcplen = TCP_TCPLEN(&inseg);

        pcb->rcv_nxt += tcplen;

        /* Update the receiver's (our) window. */
        if (pcb->rcv_wnd < tcplen) {
          pcb->rcv_wnd = 0;
        } else {
          pcb->rcv_wnd -= tcplen;
        }

        /* If there is data in the segment, we make preparations to
           pass this up to the application. The ->recv_data variable
           is used for holding the pbuf that goes to the
           application. The code for reassembling out-of-sequence data
           chains its data on this pbuf as well.

           If the segment was a FIN, we set the TF_GOT_FIN flag that will
           be used to indicate to the application that the remote side has
           closed its end of the connection. */
        if (inseg.p->tot_len > 0) {
          recv_data = inseg.p;
          /* Since this pbuf now is the responsibility of the
             application, we delete our reference to it so that we won't
             (mistakingly) deallocate it. */
          inseg.p = NULL;
        }
        if (TCPH_FLAGS(inseg.tcphdr) & TCP_FIN) {
    
          recv_flags = TF_GOT_FIN;
        }

#if TCP_QUEUE_OOSEQ
        /* We now check if we have segments on the ->ooseq queue that
           is now in sequence. */
        while (pcb->ooseq != NULL &&
               pcb->ooseq->tcphdr->seqno == pcb->rcv_nxt) {

          cseg = pcb->ooseq;
          seqno = pcb->ooseq->tcphdr->seqno;

          pcb->rcv_nxt += TCP_TCPLEN(cseg);
          if (pcb->rcv_wnd < TCP_TCPLEN(cseg)) {
            pcb->rcv_wnd = 0;
          } else {
            pcb->rcv_wnd -= TCP_TCPLEN(cseg);
          }
          if (cseg->p->tot_len > 0) {
            /* Chain this pbuf onto the pbuf that we will pass to
               the application. */
            if (recv_data) {
              pbuf_cat(recv_data, cseg->p);
            } else {
              recv_data = cseg->p;
            }
            cseg->p = NULL;
          }
          if (TCPH_FLAGS(cseg->tcphdr) & TCP_FIN) {
            LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_receive: dequeued FIN.\n"));
            recv_flags = TF_GOT_FIN;
          }


          pcb->ooseq = cseg->next;
          tcp_seg_free(cseg);
        }
#endif /* TCP_QUEUE_OOSEQ */


        /* Acknowledge the segment(s). */
        tcp_ack(pcb);

      } else {
        /* We get here if the incoming segment is out-of-sequence. */
        tcp_ack_now(pcb);
#if TCP_QUEUE_OOSEQ
        /* We queue the segment on the ->ooseq queue. */
        if (pcb->ooseq == NULL) {
          pcb->ooseq = tcp_seg_copy(&inseg);
        } else {
          /* If the queue is not empty, we walk through the queue and
             try to find a place where the sequence number of the
             incoming segment is between the sequence numbers of the
             previous and the next segment on the ->ooseq queue. That is
             the place where we put the incoming segment. If needed, we
             trim the second edges of the previous and the incoming
             segment so that it will fit into the sequence.

             If the incoming segment has the same sequence number as a
             segment on the ->ooseq queue, we discard the segment that
             contains less data. */

          prev = NULL;
          for(next = pcb->ooseq; next != NULL; next = next->next) {
            if (seqno == next->tcphdr->seqno) {
              /* The sequence number of the incoming segment is the
                 same as the sequence number of the segment on
                 ->ooseq. We check the lengths to see which one to
                 discard. */
              if (inseg.len > next->len) {
                /* The incoming segment is larger than the old
                   segment. We replace the old segment with the new
                   one. */
                cseg = tcp_seg_copy(&inseg);
                if (cseg != NULL) {
                  cseg->next = next->next;
                  if (prev != NULL) {
                    prev->next = cseg;
                  } else {
                    pcb->ooseq = cseg;
                  }
                }
                break;
              } else {
                /* Either the lenghts are the same or the incoming
                   segment was smaller than the old one; in either
                   case, we ditch the incoming segment. */
                break;
              }
            } else {
              if (prev == NULL) {
                if (TCP_SEQ_LT(seqno, next->tcphdr->seqno)) {
                  /* The sequence number of the incoming segment is lower
                     than the sequence number of the first segment on the
                     queue. We put the incoming segment first on the
                     queue. */

                  if (TCP_SEQ_GT(seqno + inseg.len, next->tcphdr->seqno)) {
                    /* We need to trim the incoming segment. */
                    inseg.len = next->tcphdr->seqno - seqno;
                    pbuf_realloc(inseg.p, inseg.len);
                  }
                  cseg = tcp_seg_copy(&inseg);
                  if (cseg != NULL) {
                    cseg->next = next;
                    pcb->ooseq = cseg;
                  }
                  break;
                }
              } else if (TCP_SEQ_LT(prev->tcphdr->seqno, seqno) &&
                         TCP_SEQ_LT(seqno, next->tcphdr->seqno)) {
                /* The sequence number of the incoming segment is in
                   between the sequence numbers of the previous and
                   the next segment on ->ooseq. We trim and insert the
                   incoming segment and trim the previous segment, if
                   needed. */
                if (TCP_SEQ_GT(seqno + inseg.len, next->tcphdr->seqno)) {
                  /* We need to trim the incoming segment. */
                  inseg.len = next->tcphdr->seqno - seqno;
                  pbuf_realloc(inseg.p, inseg.len);
                }

                cseg = tcp_seg_copy(&inseg);
                if (cseg != NULL) {
                  cseg->next = next;
                  prev->next = cseg;
                  if (TCP_SEQ_GT(prev->tcphdr->seqno + prev->len, seqno)) {
                    /* We need to trim the prev segment. */
                    prev->len = seqno - prev->tcphdr->seqno;
                    pbuf_realloc(prev->p, prev->len);
                  }
                }
                break;
              }
              /* If the "next" segment is the last segment on the
                 ooseq queue, we add the incoming segment to the end
                 of the list. */
              if (next->next == NULL &&
                  TCP_SEQ_GT(seqno, next->tcphdr->seqno)) {
                next->next = tcp_seg_copy(&inseg);
                if (next->next != NULL) {
                  if (TCP_SEQ_GT(next->tcphdr->seqno + next->len, seqno)) {
                    /* We need to trim the last segment. */
                    next->len = seqno - next->tcphdr->seqno;
                    pbuf_realloc(next->p, next->len);
                  }
                }
                break;
              }
            }
            prev = next;
          }
        }
#endif /* TCP_QUEUE_OOSEQ */

      }
    }
  } else {
    /* Segments with length 0 is taken care of here. Segments that
       fall out of the window are ACKed. */
    if (TCP_SEQ_GT(pcb->rcv_nxt, seqno) ||
        TCP_SEQ_GEQ(seqno, pcb->rcv_nxt + pcb->rcv_wnd)) {
      tcp_ack_now(pcb);
    }
  }
}

/*
 * tcp_parseopt:
 *
 * Parses the options contained in the incoming segment. (Code taken
 * from uIP with only small changes.)
 *
 */

static void
tcp_parseopt(struct tcp_pcb *pcb)
{
  u8_t c;
  u8_t *opts, opt;
  u16_t mss;

  opts = (u8_t *)tcphdr + TCP_HLEN;

  /* Parse the TCP MSS option, if present. */
  if(TCPH_HDRLEN(tcphdr) > 0x5) {
    for(c = 0; c < (TCPH_HDRLEN(tcphdr) - 5) << 2 ;) {
      opt = opts[c];
      if (opt == 0x00) {
        /* End of options. */
  break;
      } else if (opt == 0x01) {
        ++c;
        /* NOP option. */
      } else if (opt == 0x02 &&
                opts[c + 1] == 0x04) {
        /* An MSS option with the right option length. */
        mss = (opts[c + 2] << 8) | opts[c + 3];
        pcb->mss = mss > TCP_MSS? TCP_MSS: mss;

        /* And we are done processing options. */
        break;
      } else {
  if (opts[c + 1] == 0) {
          /* If the length field is zero, the options are malformed
             and we don't process them further. */
          break;
        }
        /* All other options have a length field, so that we easily
           can skip past them. */
        c += opts[c + 1];
      }
    }
  }
}



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -