⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 deinterleaver.vhd

📁 RS的编码。最新的移动多媒体应用技术的源代码
💻 VHD
字号:
-- ================================================================================
-- File: DeInterleaver.vhd
-- Description:
-- Due to the 6 * 6 structure of data, De-Interleaver is the same as Interleaver.
-- ================================================================================

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

-- ================================================================================

entity DeInterleaver is
	port
	(
		-- clock input
		clk: in std_logic;
		-- asynchroism clear input
		aclr: in std_logic;
		-- 4bit width Data ports
		inputData: in std_logic_vector (3 downto 0);
		outputData: out std_logic_vector (3 downto 0);
		-- simple ALTERA Atlantic interface ports
		sink_val: in std_logic;
		sink_sop: in std_logic;
		sink_eop: in std_logic;
		sink_ena: out std_logic;
		source_val: out std_logic;
		source_sop: out std_logic;
		source_eop: out std_logic;
		source_ena: in std_logic
	);
end DeInterleaver;

-- ================================================================================

architecture structure of DeInterleaver is

-- --------------------------------------------------------------------------------

-- component declaration
-- generate by ALTERA ip toolbench
-- name: ram_Interleaver
-- size: 4bit * 64words
component ram_DeInterleaver
	PORT
	(
		aclr: IN STD_LOGIC;
		clock: IN STD_LOGIC;
		data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
		rdaddress: IN STD_LOGIC_VECTOR (5 DOWNTO 0);
		rden: IN STD_LOGIC;
		wraddress: IN STD_LOGIC_VECTOR (5 DOWNTO 0);
		wren: IN STD_LOGIC;
		q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
	);
end component;

-- signals those connect to RAM
signal clk_ram: std_logic;
signal aclr_ram: std_logic;
signal inputData_ram: std_logic_vector (3 downto 0);
signal outputData_ram: std_logic_vector (3 downto 0);
signal readEnable_ram: std_logic;
signal writeEnable_ram: std_logic;
signal readAddress_ram: std_logic_vector (5 downto 0);
signal writeAddress_ram: std_logic_vector (5 downto 0);

-- signals those used to Atlantic interface outputs
signal interval_source_val: std_logic;
signal interval_source_sop: std_logic;
signal interval_source_eop: std_logic;
signal interval_sink_ena: std_logic;

-- flag signal indicates status: '1' input process, '0' output process`	
signal inoutFlag: std_logic;

-- write address
signal wrAddNum: integer range 0 to 36;
-- read address
signal rdAddNum: integer range 0 to 36;
-- write enable
signal writeEnable: std_logic;
-- read enable
signal readEnable: std_logic;

-- delayd signals
-- sink_eop delay
signal sink_eop_d: std_logic;
-- readEnable delay
signal readEnable_d0: std_logic;
signal readEnable_d1: std_logic;
-- interval_source sop and eop delay or acceleration
signal interval_source_sop_d0: std_logic;
signal interval_source_sop_d1: std_logic;
signal interval_source_eop_a: std_logic;
signal interval_source_eop_d0: std_logic;
signal interval_source_eop_d1: std_logic;

-- --------------------------------------------------------------------------------

begin

-- --------------------------------------------------------------------------------

-- part1: ram connections

-- ram ports map
u1: ram_DeInterleaver port map
	(
		clock => clk_ram, aclr => aclr_ram,
		data => inputData_ram, q => outputData_ram,
		rdaddress => readAddress_ram, wraddress => writeAddress_ram,
		rden => readEnable_ram, wren => writeEnable_ram
	);

-- integer converts to std_logic_vector
readAddress_ram <= conv_std_logic_vector(rdAddNum,6);
writeAddress_ram <= conv_std_logic_vector(wrAddNum,6);

-- readEnable delay
process(clk,readEnable)
begin
	if falling_edge(clk) then
		readEnable_d0 <= readEnable;
		readEnable_d1 <= readEnable_d0;
	end if;
end process;

writeEnable_ram <= writeEnable;
readEnable_ram <= readEnable_d0;

clk_ram <= clk;
aclr_ram <= aclr;

inputData_ram <= inputData;

-- outputs data at clk's falling edge
process(aclr,clk,outputData_ram)
begin
	if aclr = '1' then
		outputData <= "0000";
	else
		if falling_edge(clk) then -- using falling edge
			outputData <= outputData_ram;
		end if;
	end if;
end process;

-- --------------------------------------------------------------------------------

-- part2: generate Flag signal inoutFlag

-- delay input signal sink_eop
process(clk,sink_eop)
begin
	if rising_edge(clk) then
		sink_eop_d <= sink_eop;
	end if;
end process;

-- control inoutFlag
process(clk,aclr,sink_eop_d,interval_source_eop_a)
begin
	if aclr = '1' then
		inoutFlag <= '1';
	else
		if rising_edge(clk) then
			if inoutFlag = '1' then
				if sink_eop_d = '1' then
					inoutFlag <= '0';
				end if;
			else
				if interval_source_eop_a = '1' then
					inoutFlag <= '1';
				end if;
			end if;
		end if;
	end if;
end process;

-- --------------------------------------------------------------------------------

-- part3: generate read/write Enable/Address

-- generate writeEnable
process(aclr,inoutFlag,sink_val)
begin
	if aclr = '1' then
		writeEnable <= '0';
	else
		if inoutFlag = '1' then
			writeEnable <= sink_val;
		else
			writeEnable <= '0';
		end if;
	end if;
end process;

-- generate readEnable
process(clk,aclr,inoutFlag,source_ena)
begin
	if aclr = '1' then
		readEnable <= '0';
	else
		if falling_edge(clk) then -- using falling edge
			if (inoutFlag = '0') and (source_ena = '1') then
				readEnable <= '1';
			else
				readEnable <= '0';
			end if;
		end if;
	end if;
end process;

-- write address
process(clk,aclr,writeEnable,sink_sop,sink_eop)
begin
	if aclr = '1' then
		wrAddNum <= 1;
	else
		if falling_edge(clk) then -- using falling edge
			if writeEnable = '1' then
				if wrAddNum = 36 then
					wrAddNum <= 1;
				else
					wrAddNum <= wrAddNum + 1;
				end if;
			end if;
			if sink_sop = '1' then
				wrAddNum <= 2;
			elsif sink_eop = '1' then
				wrAddNum <= 1;
			end if;
		end if;
	end if;
end process;

-- read address
process(clk,aclr,source_ena,interval_sink_ena)
begin
	if aclr = '1' then
		rdAddNum <= 0;
	else
		if falling_edge(clk) then -- using falling edge
			if readEnable = '1' then
				if rdAddNum = 0 then
					rdAddNum <= 1;
				elsif rdAddNum = 31 then
					rdAddNum <= 2;
				elsif rdAddNum = 32 then
					rdAddNum <= 3;
				elsif rdAddNum = 33 then
					rdAddNum <= 4;
				elsif rdAddNum = 34 then
					rdAddNum <= 5;
				elsif rdAddNum = 35 then
					rdAddNum <= 6;
				else
					rdAddNum <= rdAddNum + 6;
				end if;
			end if;
			if rdAddNum = 36 then
				rdAddNum <= 0;
			end if;
		end if;
	end if;
end process;

-- --------------------------------------------------------------------------------

-- part4: Atlantic interface signals

-- source sop eop is controlled by rdAddNum
-- generate interval_source_eop_a at the same time
process(rdAddNum)
begin
	case rdAddNum is
		when 36 =>
			interval_source_eop <= '1';
			interval_source_sop <= '0';
			interval_source_eop_a <= '0';
		when 1 =>
			interval_source_sop <= '1';
			interval_source_eop <= '0';
			interval_source_eop_a <= '0';
		when 30 =>
			interval_source_sop <= '0';
			interval_source_eop <= '0';
			interval_source_eop_a <= '1';
		when others =>
			interval_source_sop <= '0';
			interval_source_eop <= '0';
			interval_source_eop_a <= '0';
	end case;
end process;

-- source_sop source_eop delay and output
process(clk,interval_source_sop)
begin
	if rising_edge(clk) then
		interval_source_sop_d0 <= interval_source_sop;
		interval_source_sop_d1 <= interval_source_sop_d0;
	end if;
end process;

process(clk,interval_source_eop)
begin
	if rising_edge(clk) then
		interval_source_eop_d0 <= interval_source_eop;
		interval_source_eop_d1 <= interval_source_eop_d0;
	end if;
end process;

process(clk,interval_source_sop_d1,interval_source_eop_d1)
begin
	if falling_edge(clk) then -- using falling edge
		source_sop <= interval_source_sop_d1;
		source_eop <= interval_source_eop_d1;
	end if;
end process;

-- generate sink_ena
process(clk,aclr,wrAddNum,rdAddNum)
begin
	if aclr = '1' then
		interval_sink_ena <= '1';
	else
		if rising_edge(clk) then
			if wrAddNum = 35 then -- edited in v1.1 deassert sink_ena earlier
				interval_sink_ena <= '0';
			elsif rdAddNum = 36 then
				interval_sink_ena <= '1';
			end if;
		end if;
	end if;
end process;

sink_ena <= interval_sink_ena;

-- generate source_val
process(clk,readEnable_d1)
begin
	if falling_edge(clk) then -- using falling edge
		interval_source_val <= readEnable_d1;
	end if;
end process;

source_val <= interval_source_val;

-- --------------------------------------------------------------------------------

end structure;

-- ================================================================================

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -