📄 _tree.c
字号:
__z = _M_create_node(__v); _S_left(__y) = __z; // also makes _M_leftmost() = __z // when __y == _M_header if (__y == this->_M_header._M_data) { _M_root() = __z; _M_rightmost() = __z; } else if (__y == _M_leftmost()) _M_leftmost() = __z; // maintain _M_leftmost() pointing to min node } else { __z = _M_create_node(__v); _S_right(__y) = __z; if (__y == _M_rightmost()) _M_rightmost() = __z; // maintain _M_rightmost() pointing to max node } _S_parent(__z) = __y; _S_left(__z) = 0; _S_right(__z) = 0; _Rb_global_inst::_Rebalance(__z, this->_M_header._M_data->_M_parent); ++_M_node_count; return iterator(__z);}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> __iterator___Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_equal(const _Value& __v){ _Link_type __y = this->_M_header._M_data; _Link_type __x = _M_root(); while (__x != 0) { __y = __x; __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert(__x, __y, __v);}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> pair< _Rb_tree_iterator<_Value, _Nonconst_traits<_Value> >, bool> _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_unique(const _Value& __v){ _Link_type __y = this->_M_header._M_data; _Link_type __x = _M_root(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) if (__j == begin()) return pair<iterator,bool>(_M_insert(/* __x*/ __y, __y, __v), true); else --__j; if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair<iterator,bool>(_M_insert(__x, __y, __v), true); return pair<iterator,bool>(__j, false);}// Modifications CRP 7/10/00 as noted to improve conformance and// efficiency.template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> __iterator__ _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc> ::insert_unique(iterator __position, const _Value& __v){ if (__position._M_node == this->_M_header._M_data->_M_left) { // begin() // if the container is empty, fall back on insert_unique. if (size() <= 0) return insert_unique(__v).first; if ( _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null else { bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__v) ); if (__comp_pos_v == false) // compare > and compare < both false so compare equal return __position; //Below __comp_pos_v == true // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Check for only one member -- in that case, __position points to itself, // and attempting to increment will cause an infinite loop. if (__after._M_node == this->_M_header._M_data) // Check guarantees exactly one member, so comparison was already // performed and we know the result; skip repeating it in _M_insert // by specifying a non-zero fourth argument. return _M_insert(0, __position._M_node, __v, __position._M_node); // All other cases: // Optimization to catch insert-equivalent -- save comparison results, // and we get this for free. if(_M_key_compare( _KeyOfValue()(__v), _S_key(__after._M_node) )) { if (_S_right(__position._M_node) == 0) return _M_insert(0, __position._M_node, __v, __position._M_node); else return _M_insert(__after._M_node, __after._M_node, __v); } else { return insert_unique(__v).first; } } } else if (__position._M_node == this->_M_header._M_data) { // end() if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v))) // pass along to _M_insert that it can skip comparing // v, Key ; since compare Key, v was true, compare v, Key must be false. return _M_insert(0, _M_rightmost(), __v, __position._M_node); // Last argument only needs to be non-null else return insert_unique(__v).first; } else { iterator __before = __position; --__before; bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)); if (__comp_v_pos && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__v) )) { if (_S_right(__before._M_node) == 0) return _M_insert(0, __before._M_node, __v, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __position._M_node, __v); // first argument just needs to be non-null } else { // Does the insertion point fall immediately AFTER the hint? iterator __after = __position; ++__after; // Optimization to catch equivalent cases and avoid unnecessary comparisons bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier // If the earlier comparison was true, this comparison doesn't need to be // performed because it must be false. However, if the earlier comparison // was false, we need to perform this one because in the equal case, both will // be false. if (!__comp_v_pos) __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)); if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false && __comp_pos_v && (__after._M_node == this->_M_header._M_data || _M_key_compare( _KeyOfValue()(__v), _S_key(__after._M_node) ))) { if (_S_right(__position._M_node) == 0) return _M_insert(0, __position._M_node, __v, __position._M_node); else return _M_insert(__after._M_node, __after._M_node, __v); } else { // Test for equivalent case if (__comp_v_pos == __comp_pos_v) return __position; else return insert_unique(__v).first; } } }}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_equal(iterator __position, const _Value& __v){ if (__position._M_node == this->_M_header._M_data->_M_left) { // begin() // Check for zero members if (size() <= 0) return insert_equal(__v); if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) return _M_insert(__position._M_node, __position._M_node, __v); else { // Check for only one member if (__position._M_node->_M_left == __position._M_node) // Unlike insert_unique, can't avoid doing a comparison here. return _M_insert(0, __position._M_node, __v); // All other cases: // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Already know that compare(pos, v) must be true! // Therefore, we want to know if compare(after, v) is false. // (i.e., we now pos < v, now we want to know if v <= after) // If not, invalid hint. if ( __after._M_node==this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__v) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(0, __position._M_node, __v, __position._M_node); else return _M_insert(__after._M_node, __after._M_node, __v); } else // Invalid hint return insert_equal(__v); } } else if (__position._M_node == this->_M_header._M_data) {// end() if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost()))) return _M_insert(0, _M_rightmost(), __v, __position._M_node); // Last argument only needs to be non-null else return insert_equal(__v); } else { iterator __before = __position; --__before; // store the result of the comparison between pos and v so // that we don't have to do it again later. Note that this reverses the shortcut // on the if, possibly harming efficiency in comparisons; I think the harm will // be negligible, and to do what I want to do (save the result of a comparison so // that it can be re-used) there is no alternative. Test here is for before <= v <= pos. bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)); if (!__comp_pos_v && !_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert(0, __before._M_node, __v, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __position._M_node, __v); } else { // Does the insertion point fall immediately AFTER the hint? // Test for pos < v <= after iterator __after = __position; ++__after; if (__comp_pos_v && ( __after._M_node==this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__v) ) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(0, __position._M_node, __v, __position._M_node); else return _M_insert(__after._M_node, __after._M_node, __v); } else // Invalid hint return insert_equal(__v); } }}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> _Rb_tree_node<_Value>* _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::_M_copy(_Rb_tree_node<_Value>* __x, _Rb_tree_node<_Value>* __p){ // structural copy. __x and __p must be non-null. _Link_type __top = _M_clone_node(__x); __top->_M_parent = __p; _STLP_TRY { if (__x->_M_right) __top->_M_right = _M_copy(_S_right(__x), __top); __p = __top; __x = _S_left(__x); while (__x != 0) { _Link_type __y = _M_clone_node(__x); __p->_M_left = __y; __y->_M_parent = __p; if (__x->_M_right) __y->_M_right = _M_copy(_S_right(__x), __y); __p = __y; __x = _S_left(__x); } } _STLP_UNWIND(_M_erase(__top)); return __top;}// this has to stay out-of-line : it's recursivetemplate <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> void _Rb_tree<_Key,_Value,_KeyOfValue, _Compare,_Alloc>::_M_erase(_Rb_tree_node<_Value>* __x){ // erase without rebalancing while (__x != 0) { _M_erase(_S_right(__x)); _Link_type __y = _S_left(__x); _STLP_STD::_Destroy(&__x->_M_value_field); this->_M_header.deallocate(__x,1); __x = __y; }}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> __size_type__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::count(const _Key& __k) const{ pair<const_iterator, const_iterator> __p = equal_range(__k); size_type __n = distance(__p.first, __p.second); return __n;}inline int __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root){ if (__node == 0) return 0; else { int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0; if (__node == __root) return __bc; else return __bc + __black_count(__node->_M_parent, __root); }}template <class _Key, class _Value, class _KeyOfValue, class _Compare, class _Alloc> bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const{ if (_M_node_count == 0 || begin() == end()) return _M_node_count == 0 && begin() == end() && this->_M_header._M_data->_M_left == this->_M_header._M_data && this->_M_header._M_data->_M_right == this->_M_header._M_data; int __len = __black_count(_M_leftmost(), _M_root()); for (const_iterator __it = begin(); __it != end(); ++__it) { _Link_type __x = (_Link_type) __it._M_node; _Link_type __L = _S_left(__x); _Link_type __R = _S_right(__x); if (__x->_M_color == _S_rb_tree_red) if ((__L && __L->_M_color == _S_rb_tree_red) || (__R && __R->_M_color == _S_rb_tree_red)) return false; if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) return false; if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) return false; if (!__L && !__R && __black_count(__x, _M_root()) != __len) return false; } if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) return false; if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) return false; return true;}_STLP_END_NAMESPACE# undef __iterator__ # undef iterator# undef __size_type__ #endif /* _STLP_TREE_C */// Local Variables:// mode:C++// End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -