⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 _function.h

📁 MONA是为数不多的C++语言编写的一个很小的操作系统
💻 H
字号:
/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Copyright (c) 1997 * Moscow Center for SPARC Technology * * Copyright (c) 1999  * Boris Fomitchev * * This material is provided "as is", with absolutely no warranty expressed * or implied. Any use is at your own risk. * * Permission to use or copy this software for any purpose is hereby granted  * without fee, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * *//* NOTE: This is an internal header file, included by other STL headers. *   You should not attempt to use it directly. */#ifndef _STLP_INTERNAL_FUNCTION_H#define _STLP_INTERNAL_FUNCTION_H#ifndef _STLP_INTERNAL_FUNCTION_BASE_H#include <stl/_function_base.h>#endif_STLP_BEGIN_NAMESPACE# ifndef _STLP_NO_EXTENSIONS// identity_element (not part of the C++ standard).template <class _Tp> inline _Tp identity_element(plus<_Tp>) {  return _Tp(0); }template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) { return _Tp(1); }# endif#  if defined (_STLP_BASE_TYPEDEF_BUG)// this workaround is needed for SunPro 4.0.1// suggested by "Martin Abernethy" <gma@paston.co.uk>:// We have to introduce the XXary_predicate_aux structures in order to// access the argument and return types of predicate functions supplied// as type parameters. SUN C++ 4.0.1 compiler gives errors for template type parameters// of the form 'name1::name2', where name1 is itself a type parameter.template <class _Pair>struct __pair_aux : private _Pair{	typedef typename _Pair::first_type first_type;	typedef typename _Pair::second_type second_type;};template <class _Operation>struct __unary_fun_aux : private _Operation{	typedef typename _Operation::argument_type argument_type;	typedef typename _Operation::result_type result_type;};template <class _Operation>struct __binary_fun_aux  : private _Operation{	typedef typename _Operation::first_argument_type first_argument_type;	typedef typename _Operation::second_argument_type second_argument_type;	typedef typename _Operation::result_type result_type;};#  define __UNARY_ARG(__Operation,__type)  __unary_fun_aux<__Operation>::__type#  define __BINARY_ARG(__Operation,__type)  __binary_fun_aux<__Operation>::__type#  define __PAIR_ARG(__Pair,__type)  __pair_aux<__Pair>::__type# else#  define __UNARY_ARG(__Operation,__type)  __Operation::__type#  define __BINARY_ARG(__Operation,__type) __Operation::__type#  define __PAIR_ARG(__Pair,__type) __Pair::__type# endiftemplate <class _Predicate>class unary_negate :     public unary_function<typename __UNARY_ARG(_Predicate,argument_type), bool> {protected:  _Predicate _M_pred;public:  explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}  bool operator()(const typename _Predicate::argument_type& __x) const {    return !_M_pred(__x);  }};template <class _Predicate>inline unary_negate<_Predicate> not1(const _Predicate& __pred){  return unary_negate<_Predicate>(__pred);}template <class _Predicate> class binary_negate     : public binary_function<typename __BINARY_ARG(_Predicate,first_argument_type),			     typename __BINARY_ARG(_Predicate,second_argument_type),                              bool> {protected:  _Predicate _M_pred;public:  explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}  bool operator()(const typename _Predicate::first_argument_type& __x,                   const typename _Predicate::second_argument_type& __y) const  {    return !_M_pred(__x, __y);   }};template <class _Predicate>inline binary_negate<_Predicate> not2(const _Predicate& __pred){  return binary_negate<_Predicate>(__pred);}template <class _Operation> class binder1st :     public unary_function<typename __BINARY_ARG(_Operation,second_argument_type),                          typename __BINARY_ARG(_Operation,result_type) > {protected:  _Operation _M_op;  typename _Operation::first_argument_type _M_value;public:  binder1st(const _Operation& __x,            const typename _Operation::first_argument_type& __y)      : _M_op(__x), _M_value(__y) {}  typename _Operation::result_type  operator()(const typename _Operation::second_argument_type& __x) const {    return _M_op(_M_value, __x);   }  typename _Operation::result_type  operator()(typename _Operation::second_argument_type& __x) const {    return _M_op(_M_value, __x);   }};template <class _Operation, class _Tp>inline binder1st<_Operation> bind1st(const _Operation& __fn, const _Tp& __x) {  typedef typename _Operation::first_argument_type _Arg1_type;  return binder1st<_Operation>(__fn, _Arg1_type(__x));}template <class _Operation> class binder2nd  : public unary_function<typename __BINARY_ARG(_Operation,first_argument_type),                          typename __BINARY_ARG(_Operation,result_type)> {protected:  _Operation _M_op;  typename _Operation::second_argument_type value;public:  binder2nd(const _Operation& __x,            const typename _Operation::second_argument_type& __y)       : _M_op(__x), value(__y) {}  typename _Operation::result_type  operator()(const typename _Operation::first_argument_type& __x) const {    return _M_op(__x, value);   }  typename _Operation::result_type  operator()(typename _Operation::first_argument_type& __x) const {    return _M_op(__x, value);   }};template <class _Operation, class _Tp>inline binder2nd<_Operation> bind2nd(const _Operation& __fn, const _Tp& __x) {  typedef typename _Operation::second_argument_type _Arg2_type;  return binder2nd<_Operation>(__fn, _Arg2_type(__x));}# ifndef _STLP_NO_EXTENSIONS// unary_compose and binary_compose (extensions, not part of the standard).template <class _Operation1, class _Operation2>class unary_compose :   public unary_function<typename __UNARY_ARG(_Operation2,argument_type),                        typename __UNARY_ARG(_Operation1,result_type)> {protected:  _Operation1 _M_fn1;  _Operation2 _M_fn2;public:  unary_compose(const _Operation1& __x, const _Operation2& __y)     : _M_fn1(__x), _M_fn2(__y) {}  typename _Operation1::result_type  operator()(const typename _Operation2::argument_type& __x) const {    return _M_fn1(_M_fn2(__x));  }  typename _Operation1::result_type  operator()(typename _Operation2::argument_type& __x) const {    return _M_fn1(_M_fn2(__x));  }};template <class _Operation1, class _Operation2>inline unary_compose<_Operation1,_Operation2> compose1(const _Operation1& __fn1, const _Operation2& __fn2){  return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);}template <class _Operation1, class _Operation2, class _Operation3>class binary_compose :     public unary_function<typename __UNARY_ARG(_Operation2,argument_type),                          typename __BINARY_ARG(_Operation1,result_type)> {protected:  _Operation1 _M_fn1;  _Operation2 _M_fn2;  _Operation3 _M_fn3;public:  binary_compose(const _Operation1& __x, const _Operation2& __y,                  const _Operation3& __z)     : _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }  typename _Operation1::result_type  operator()(const typename _Operation2::argument_type& __x) const {    return _M_fn1(_M_fn2(__x), _M_fn3(__x));  }  typename _Operation1::result_type  operator()(typename _Operation2::argument_type& __x) const {    return _M_fn1(_M_fn2(__x), _M_fn3(__x));  }};template <class _Operation1, class _Operation2, class _Operation3>inline binary_compose<_Operation1, _Operation2, _Operation3> compose2(const _Operation1& __fn1, const _Operation2& __fn2,          const _Operation3& __fn3){  return binary_compose<_Operation1,_Operation2,_Operation3>    (__fn1, __fn2, __fn3);}# endif /* _STLP_NO_EXTENSIONS */# ifndef _STLP_NO_EXTENSIONS// identity is an extension: it is not part of the standard.template <class _Tp> struct identity : public _Identity<_Tp> {};// select1st and select2nd are extensions: they are not part of the standard.template <class _Pair> struct select1st : public _Select1st<_Pair> {};template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};template <class _Arg1, class _Arg2> struct project1st : public _Project1st<_Arg1, _Arg2> {};template <class _Arg1, class _Arg2>struct project2nd : public _Project2nd<_Arg1, _Arg2> {};// constant_void_fun, constant_unary_fun, and constant_binary_fun are// extensions: they are not part of the standard.  (The same, of course,// is true of the helper functions constant0, constant1, and constant2.)template <class _Result>struct _Constant_void_fun {  typedef _Result result_type;  result_type _M_val;  _Constant_void_fun(const result_type& __v) : _M_val(__v) {}  const result_type& operator()() const { return _M_val; }};  template <class _Result>struct constant_void_fun : public _Constant_void_fun<_Result> {  constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}};  template <class _Result, __DFL_TMPL_PARAM( _Argument , _Result) >struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>{  constant_unary_fun(const _Result& __v)    : _Constant_unary_fun<_Result, _Argument>(__v) {}};template <class _Result, __DFL_TMPL_PARAM( _Arg1 , _Result), __DFL_TMPL_PARAM( _Arg2 , _Arg1) >struct constant_binary_fun  : public _Constant_binary_fun<_Result, _Arg1, _Arg2>{  constant_binary_fun(const _Result& __v)    : _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}};template <class _Result>inline constant_void_fun<_Result> constant0(const _Result& __val){  return constant_void_fun<_Result>(__val);}template <class _Result>inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val){  return constant_unary_fun<_Result,_Result>(__val);}template <class _Result>inline constant_binary_fun<_Result,_Result,_Result> constant2(const _Result& __val){  return constant_binary_fun<_Result,_Result,_Result>(__val);}// subtractive_rng is an extension: it is not part of the standard.// Note: this code assumes that int is 32 bits.class subtractive_rng : public unary_function<_STLP_UINT32_T, _STLP_UINT32_T> {private:  _STLP_UINT32_T _M_table[55];  _STLP_UINT32_T _M_index1;  _STLP_UINT32_T _M_index2;public:  _STLP_UINT32_T operator()(_STLP_UINT32_T __limit) {    _M_index1 = (_M_index1 + 1) % 55;    _M_index2 = (_M_index2 + 1) % 55;    _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];    return _M_table[_M_index1] % __limit;  }  void _M_initialize(_STLP_UINT32_T __seed)  {    _STLP_UINT32_T __k = 1;    _M_table[54] = __seed;    _STLP_UINT32_T __i;    for (__i = 0; __i < 54; __i++) {        _STLP_UINT32_T __ii = (21 * (__i + 1) % 55) - 1;        _M_table[__ii] = __k;        __k = __seed - __k;        __seed = _M_table[__ii];    }    for (int __loop = 0; __loop < 4; __loop++) {        for (__i = 0; __i < 55; __i++)            _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];    }    _M_index1 = 0;    _M_index2 = 31;  }  subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }  subtractive_rng() { _M_initialize(161803398ul); }};# endif /* _STLP_NO_EXTENSIONS */_STLP_END_NAMESPACE#include <stl/_function_adaptors.h>#endif /* _STLP_INTERNAL_FUNCTION_H */// Local Variables:// mode:C++// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -