⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dct.cxx

📁 开源的openh323的v1.18.0版,有1.19.0版无法编译过的朋友可以用这版
💻 CXX
📖 第 1 页 / 共 3 页
字号:
/*
 * Copyright (c) 1994 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the Network Research
 *	Group at Lawrence Berkeley Laboratory.
 * 4. Neither the name of the University nor of the Laboratory may be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/************ Change log
 *
 * $Log: dct.cxx,v $
 * Revision 1.14  2003/03/14 07:25:55  robertj
 * Removed $header keyword so is not different on alternate repositories
 *
 * Revision 1.13  2002/10/24 21:05:26  dereks
 * Fix compile time warning.
 *
 * Revision 1.12  2002/05/17 01:47:33  dereks
 * backout the integer maths in the h261 codec.
 *
 * Revision 1.11  2002/02/15 03:54:31  yurik
 * Warnings removed during compilation, patch courtesy of Jehan Bing, jehan@bravobrava.com
 *
 * Revision 1.10  2001/10/24 20:24:32  dereks
 * Remove green stripes under windows for INT_64. Thanks to Robert Lupa.
 *
 * Revision 1.9  2001/10/17 03:52:39  robertj
 * Fixed MSVC compatibility
 *
 * Revision 1.8  2001/10/17 01:54:36  yurik
 * Fixed clash with CE includes for INT32 type
 *
 * Revision 1.7  2001/10/16 23:51:42  dereks
 * Change vic's fdct() from floating-point to fix-point. Improves performance
 * for h261 video significantly on some machines. Thanks to Cosmos Jiang
 *
 * Revision 1.6  2001/10/16 21:20:07  yurik
 * Removed warnings on Windows CE. Submitted by Jehan Bing, jehan@bravobrava.com
 *
 * Revision 1.3  2000/12/19 22:22:34  dereks
 * Remove connection to grabber-OS.cxx files. grabber-OS.cxx files no longer used.
 * Video data is now read from a video channel, using the pwlib classes.
 *
 * Revision 1.2  2000/08/25 03:18:49  dereks
 * Add change log facility (Thanks Robert for the info on implementation)
 *
 *
 *
 ********/

#include <sys/types.h>
#include "bsd-endian.h"
#include "dct.h"

/*
 * Macros for fix-point (integer) arithmetic.  FP_NBITS gives the number
 * of binary digits past the decimal point.  FP_MUL computes the product
 * of two fixed point numbers.  A fixed point number and an integer
 * can be directly multiplied to give a fixed point number.  FP_SCALE
 * converts a floating point number to fixed point (and is used only
 * at startup, not by the dct engine).  FP_NORM converts a fixed
 * point number to scalar by rounding to the closest integer.
 * FP_JNORM is similar except it folds the jpeg bias of 128 into the
 * rounding addition.
 */
#define FP_NBITS 15
#define FP_MUL(a, b)	((((a) >> 5) * ((b) >> 5)) >> (FP_NBITS - 10))
#define FP_SCALE(v)	(int)((double)(v) * double(1 << FP_NBITS) + 0.5)
#define FP_NORM(v)	(((v) + (1 << (FP_NBITS-1))) >> FP_NBITS)
#define FP_JNORM(v)	(((v) + (257 << (FP_NBITS-1))) >> FP_NBITS)

#define M(n) ((m0 >> (n)) & 1)

/*
 * This macro stolen from nv.
 */
/* Sick little macro which will limit x to [0..255] with logical ops */
#define LIMIT8(x, t) ((t = (x)), (t &= ~(t>>31)), (t | ~((t-256) >> 31)))
#define LIMIT(x, t) (LIMIT8((x), t) & 0xff)

/* row order */
const u_char ROWZAG[] = {
	0,  1,  8, 16,  9,  2,  3, 10,
	17, 24, 32, 25, 18, 11,  4,  5,
	12, 19, 26, 33, 40, 48, 41, 34,
	27, 20, 13,  6,  7, 14, 21, 28,
	35, 42, 49, 56, 57, 50, 43, 36,
	29, 22, 15, 23, 30, 37, 44, 51,
	58, 59, 52, 45, 38, 31, 39, 46,
	53, 60, 61, 54, 47, 55, 62, 63,
	0,  0,  0,  0,  0,  0,  0,  0,
	0,  0,  0,  0,  0,  0,  0,  0
};
/* column order */
const u_char COLZAG[] = {
	0, 8, 1, 2, 9, 16, 24, 17,
	10, 3, 4, 11, 18, 25, 32, 40,
	33, 26, 19, 12, 5, 6, 13, 20,
	27, 34, 41, 48, 56, 49, 42, 35,
	28, 21, 14, 7, 15, 22, 29, 36,
	43, 50, 57, 58, 51, 44, 37, 30,
	23, 31, 38, 45, 52, 59, 60, 53,
	46, 39, 47, 54, 61, 62, 55, 63,
	0,  0,  0,  0,  0,  0,  0,  0,
	0,  0,  0,  0,  0,  0,  0,  0
};

#define A1 FP_SCALE(0.7071068)
#define A2 FP_SCALE(0.5411961)
#define A3 A1
#define A4 FP_SCALE(1.3065630)
#define A5 FP_SCALE(0.3826834)

#define FA1 (0.707106781f)
#define FA2 (0.541196100f)
#define FA3 FA1
#define FA4 (1.306562965f)
#define FA5 (0.382683433f)

#ifdef B0
#undef B0
#endif
/*
 * these magic numbers are scaling factors for each coef of the 1-d
 * AA&N DCT.  The scale factor for coef 0 is 1 and coef 1<=n<=7 is
 * cos(n*PI/16)*sqrt(2).  There is also a normalization of sqrt(8).
 * Formally you divide by the scale factor but we multiply by the
 * inverse because it's faster.  So the numbers below are the inverse
 * of what was just described.
 */
#define B0 0.35355339059327376220
#define B1 0.25489778955207958447
#define B2 0.27059805007309849220
#define B3 0.30067244346752264027
#define B4 0.35355339059327376220
#define B5 0.44998811156820785231
#define B6 0.65328148243818826392
#define B7 1.28145772387075308943

/*
 * Output multipliers for AA&N DCT
 * (i.e., first stage multipliers for inverse DCT).
 */
static const double first_stage[8] = { B0, B1, B2, B3, B4, B5, B6, B7, };

/*
 * The first_stage array crossed with itself.  This allows us
 * to embed the first stage multipliers of the row pass by
 * computing scaled versions of the columns.
 */
static const int cross_stage[64] = {
	FP_SCALE(B0 * B0),
	FP_SCALE(B0 * B1),
	FP_SCALE(B0 * B2),
	FP_SCALE(B0 * B3),
	FP_SCALE(B0 * B4),
	FP_SCALE(B0 * B5),
	FP_SCALE(B0 * B6),
	FP_SCALE(B0 * B7),

	FP_SCALE(B1 * B0),
	FP_SCALE(B1 * B1),
	FP_SCALE(B1 * B2),
	FP_SCALE(B1 * B3),
	FP_SCALE(B1 * B4),
	FP_SCALE(B1 * B5),
	FP_SCALE(B1 * B6),
	FP_SCALE(B1 * B7),

	FP_SCALE(B2 * B0),
	FP_SCALE(B2 * B1),
	FP_SCALE(B2 * B2),
	FP_SCALE(B2 * B3),
	FP_SCALE(B2 * B4),
	FP_SCALE(B2 * B5),
	FP_SCALE(B2 * B6),
	FP_SCALE(B2 * B7),

	FP_SCALE(B3 * B0),
	FP_SCALE(B3 * B1),
	FP_SCALE(B3 * B2),
	FP_SCALE(B3 * B3),
	FP_SCALE(B3 * B4),
	FP_SCALE(B3 * B5),
	FP_SCALE(B3 * B6),
	FP_SCALE(B3 * B7),

	FP_SCALE(B4 * B0),
	FP_SCALE(B4 * B1),
	FP_SCALE(B4 * B2),
	FP_SCALE(B4 * B3),
	FP_SCALE(B4 * B4),
	FP_SCALE(B4 * B5),
	FP_SCALE(B4 * B6),
	FP_SCALE(B4 * B7),

	FP_SCALE(B5 * B0),
	FP_SCALE(B5 * B1),
	FP_SCALE(B5 * B2),
	FP_SCALE(B5 * B3),
	FP_SCALE(B5 * B4),
	FP_SCALE(B5 * B5),
	FP_SCALE(B5 * B6),
	FP_SCALE(B5 * B7),

	FP_SCALE(B6 * B0),
	FP_SCALE(B6 * B1),
	FP_SCALE(B6 * B2),
	FP_SCALE(B6 * B3),
	FP_SCALE(B6 * B4),
	FP_SCALE(B6 * B5),
	FP_SCALE(B6 * B6),
	FP_SCALE(B6 * B7),

	FP_SCALE(B7 * B0),
	FP_SCALE(B7 * B1),
	FP_SCALE(B7 * B2),
	FP_SCALE(B7 * B3),
	FP_SCALE(B7 * B4),
	FP_SCALE(B7 * B5),
	FP_SCALE(B7 * B6),
	FP_SCALE(B7 * B7),
};
static const float f_cross_stage[64] = {
	(float)(B0 * B0),
	(float)(B0 * B1),
	(float)(B0 * B2),
	(float)(B0 * B3),
	(float)(B0 * B4),
	(float)(B0 * B5),
	(float)(B0 * B6),
	(float)(B0 * B7),

	(float)(B1 * B0),
	(float)(B1 * B1),
	(float)(B1 * B2),
	(float)(B1 * B3),
	(float)(B1 * B4),
	(float)(B1 * B5),
	(float)(B1 * B6),
	(float)(B1 * B7),

	(float)(B2 * B0),
	(float)(B2 * B1),
	(float)(B2 * B2),
	(float)(B2 * B3),
	(float)(B2 * B4),
	(float)(B2 * B5),
	(float)(B2 * B6),
	(float)(B2 * B7),

	(float)(B3 * B0),
	(float)(B3 * B1),
	(float)(B3 * B2),
	(float)(B3 * B3),
	(float)(B3 * B4),
	(float)(B3 * B5),
	(float)(B3 * B6),
	(float)(B3 * B7),

	(float)(B4 * B0),
	(float)(B4 * B1),
	(float)(B4 * B2),
	(float)(B4 * B3),
	(float)(B4 * B4),
	(float)(B4 * B5),
	(float)(B4 * B6),
	(float)(B4 * B7),

	(float)(B5 * B0),
	(float)(B5 * B1),
	(float)(B5 * B2),
	(float)(B5 * B3),
	(float)(B5 * B4),
	(float)(B5 * B5),
	(float)(B5 * B6),
	(float)(B5 * B7),

	(float)(B6 * B0),
	(float)(B6 * B1),
	(float)(B6 * B2),
	(float)(B6 * B3),
	(float)(B6 * B4),
	(float)(B6 * B5),
	(float)(B6 * B6),
	(float)(B6 * B7),

	(float)(B7 * B0),
	(float)(B7 * B1),
	(float)(B7 * B2),
	(float)(B7 * B3),
	(float)(B7 * B4),
	(float)(B7 * B5),
	(float)(B7 * B6),
	(float)(B7 * B7),
};

/*
 * Map a quantization table in natural, row-order,
 * into the qt input expected by rdct().
 */
void
rdct_fold_q(const int* in, int* out)
{
	for (int i = 0; i < 64; ++i) {
		/*
		 * Fold column and row passes of the dct.
		 * By scaling each column DCT independently,
		 * we pre-bias all the row DCT's so the
		 * first multiplier is already embedded
		 * in the temporary result.  Thanks to
		 * Martin Vetterli for explaining how
		 * to do this.
		 */
		double v = double(in[i]);
		v *= first_stage[i & 7];
		v *= first_stage[i >> 3];
		out[i] = FP_SCALE(v);
	}
}

/*
 * Just like rdct_fold_q() but we divide by the quantizer.
 */
void fdct_fold_q(const int* in, float* out)
{
	for (int i = 0; i < 64; ++i) {
		double v = first_stage[i >> 3];
		v *= first_stage[i & 7];
		double q = double(in[i]);
		out[i] = v / q;
	}
}

void dcsum(int dc, u_char* in, u_char* out, int stride)
{
	for (int k = 8; --k >= 0; ) {
		int t;
#ifdef INT_64
		/*XXX assume little-endian */
		INT_64 i = *(INT_64*)in;
		INT_64 o = (INT_64)LIMIT(dc + (int)(i >> 56 & 0xff), t) << 56;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 48 & 0xff), t) << 48;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 40 & 0xff), t) << 40;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 32 & 0xff), t) << 32;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 24 & 0xff), t) << 24;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 16 & 0xff), t) << 16;
		o |=  (INT_64)LIMIT(dc + (int)(i >> 8 & 0xff), t) << 8;
		o |=  (INT_64)LIMIT(dc + (int)(i & 0xff), t);
		*(INT_64*)out = o;
#else
		u_int o = 0;
		u_int i = *(u_int*)in;
		SPLICE(o, LIMIT(dc + EXTRACT(i, 24), t), 24);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 16), t), 16);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 8), t), 8);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 0), t), 0);
		*(u_int*)out = o;

		o = 0;
		i = *(u_int*)(in + 4);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 24),  t), 24);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 16), t), 16);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 8), t), 8);
		SPLICE(o, LIMIT(dc + EXTRACT(i, 0), t), 0);
		*(u_int*)(out + 4) = o;
#endif
		in += stride;
		out += stride;
	}
}

void dcsum2(int dc, u_char* in, u_char* out, int stride)
{
	for (int k = 8; --k >= 0; ) {
		int t;
		u_int o = 0;
		SPLICE(o, LIMIT(dc + in[0], t), 24);
		SPLICE(o, LIMIT(dc + in[1], t), 16);
		SPLICE(o, LIMIT(dc + in[2], t), 8);
		SPLICE(o, LIMIT(dc + in[3], t), 0);
		*(u_int*)out = o;

		o = 0;
		SPLICE(o, LIMIT(dc + in[4], t), 24);
		SPLICE(o, LIMIT(dc + in[5], t), 16);
		SPLICE(o, LIMIT(dc + in[6], t), 8);
		SPLICE(o, LIMIT(dc + in[7], t), 0);
		*(u_int*)(out + 4) = o;

		in += stride;
		out += stride;
	}
}

void dcfill(int DC, u_char* out, int stride)
{
	int t;
	u_int dc = DC;
	dc = LIMIT(dc, t);
	dc |= dc << 8;
	dc |= dc << 16;
#ifdef INT_64

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -