⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arithmetic_codec.cpp

📁 算术编码快速算法文档和源代码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                       ****************************                        -
//                        ARITHMETIC CODING EXAMPLES                         -
//                       ****************************                        -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Fast arithmetic coding implementation                                     -
// -> 32-bit variables, 64-bit product, periodic updates, table decoding     -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Version 1.00  -  April 25, 2004                                           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                                  WARNING                                  -
//                                 =========                                 -
//                                                                           -
// The only purpose of this program is to demonstrate the basic principles   -
// of arithmetic coding. It is provided as is, without any express or        -
// implied warranty, without even the warranty of fitness for any particular -
// purpose, or that the implementations are correct.                         -
//                                                                           -
// Permission to copy and redistribute this code is hereby granted, provided -
// that this warning and copyright notices are not removed or altered.       -
//                                                                           -
// Copyright (c) 2004 by Amir Said (said@ieee.org) &                         -
//                       William A. Pearlman (pearlw@ecse.rpi.edu)           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// A description of the arithmetic coding method used here is available in   -
//                                                                           -
// Lossless Compression Handbook, ed. K. Sayood                              -
// Chapter 5: Arithmetic Coding (A. Said), pp. 101-152, Academic Press, 2003 -
//                                                                           -
// A. Said, Introduction to Arithetic Coding Theory and Practice             -
// HP Labs report HPL-2004-76  -  http://www.hpl.hp.com/techreports/         -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


// - - Inclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#include <stdlib.h>
#include "arithmetic_codec.h"


// - - Constants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

const unsigned AC__MinLength = 0x01000000U;   // threshold for renormalization
const unsigned AC__MaxLength = 0xFFFFFFFFU;      // maximum AC interval length

const unsigned AC__LengthShift = 32;          // bit shift to scale the length 
const double   AC__ProbScaling = 1.0 + double(0xFFFFFFFFU);

                                  // Maximum symbol counts for adaptive models
const unsigned BM__MaxCount = 1 << 14;                       // for bit models
const unsigned DM__MaxCount = 1 << 17;                      // for data models


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Static functions  - - - - - - - - - - - - - - - - - - - - - - - - - - -
                                   // upper 32-bit result of 32x32-bit product
inline unsigned Product_64(unsigned l, unsigned c)
{
  _asm {
    mov eax,l
    mul c
    mov eax,edx
  }
}                                              // return value in register EAX

                      // division of 64-bit (after scaling) by a 32-bit number
inline unsigned Division_64(unsigned dvh, unsigned dvr)
{
  _asm {
    xor eax,eax
    not eax
    mov edx,dvh
    div dvr
  }
}                                              // return value in register EAX

static void AC_Error(const char * msg)
{
  fprintf(stderr, "\n\n -> Arithmetic coding error: ");
  fputs(msg, stderr);
  fputs("\n Execution terminated!\n", stderr);
  exit(1);
}


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Coding implementations  - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::propagate_carry(void)
{
  unsigned char * p;            // carry propagation on compressed data buffer
  for (p = ac_pointer - 1; *p == 0xFFU; p--) *p = 0;
  ++*p;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_enc_interval(void)
{
  do {                                          // output and discard top byte
    *ac_pointer++ = (unsigned char)(base >> 24);
    base <<= 8;
  } while ((length <<= 8) < AC__MinLength);        // length multiplied by 256
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_dec_interval(void)
{
  do {                                              // read least-signif. byte
    value = (value << 8) | unsigned(*++ac_pointer);
  } while ((length <<= 8) < AC__MinLength);        // length multiplied by 256
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bit(unsigned bit)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  length >>= 1;                                              // halve interval
  if (bit) {
    unsigned init_base = base;
    base += length;                                               // move base
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bit(void)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  length >>= 1;                                              // halve interval
  unsigned bit = (value >= length);                              // decode bit
  if (bit) value -= length;                                       // move base

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bits(unsigned data, unsigned bits)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
  if (data >= (1U << bits)) AC_Error("invalid data");
#endif

  unsigned init_base = base;
  base += data * (length >>= bits);            // new interval base and length

  if (init_base > base) propagate_carry();                 // overflow = carry
  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bits(unsigned bits)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
#endif

  unsigned s = value / (length >>= bits);      // decode symbol, change length

  value -= length * s;                                      // update interval
  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return s;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  unsigned x = Product_64(length, M.bit_0_prob);             // product l x p0
                                                            // update interval
  if (bit == 0)
    length  = x;
  else {
    unsigned init_base = base;
    base   += x;
    length -= x;
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned x = Product_64(length, M.bit_0_prob);             // product l x p0
  unsigned bit = (value >= x);                                     // decision
                                                    // update & shift interval
  if (bit == 0)
    length  = x;
  else {
    value  -= x;                                 // shifted interval base = 0
    length -= x;
  }

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  unsigned x = Product_64(length, M.bit_0_prob);             // product l x p0
                                                            // update interval
  if (bit == 0) {
    length = x;
    ++M.bit_0_count;
  }
  else {
    unsigned init_base = base;
    base   += x;
    length -= x;
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization

  if (--M.bits_until_update == 0) M.update();         // periodic model update
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned x = Product_64(length, M.bit_0_prob);             // product l x p0
  unsigned bit = (value >= x);                                     // decision
                                                            // update interval
  if (bit == 0) {
    length = x;
    ++M.bit_0_count;
  }
  else {
    value  -= x;
    length -= x;
  }

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  if (--M.bits_until_update == 0) M.update();         // periodic model update

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned data,
                              Static_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if (data >= M.data_symbols) AC_Error("invalid data symbol");
#endif

  unsigned init_base = base;
  unsigned x = Product_64(length, M.distribution[data]);   // compute products
                                                          
  base  += x;                                               // update interval
  length = Product_64(length, M.distribution[data+1]) - x;

  if (init_base > base) propagate_carry();                 // overflow = carry

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Static_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned n, s, x, y;

  if (M.decoder_table) {              // use table look-up for faster decoding

    unsigned dv = Division_64(value, length);
    unsigned t = dv >> M.table_shift;
  
    s = M.decoder_table[t];         // initial decision based on table look-up
    n = M.decoder_table[t+1] + 1;

    while (n > s + 1) {                        // finish with bisection search
      unsigned m = (s + n) >> 1;
      if (M.distribution[m] > dv) n = m; else s = m;
    }
                                                           // compute products
    x = Product_64(length, M.distribution[s]);
    y = Product_64(length, M.distribution[s+1]);
  }

  else {                                  // decode using only multiplications

    x = s = 0;
    y = length - 1;
    unsigned m = (n = M.data_symbols) >> 1;
                                                // decode via bisection search
    do {
      unsigned z = Product_64(length, M.distribution[m]);
      if (z > value) {
        n = m;
        y = z;                                             // value is smaller
      }
      else {
        s = m;
        x = z;                                     // value is larger or equal
      }
    } while ((m = (s + n) >> 1) != s);
  }

  value -= x;                                               // update interval
  length = y - x;

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return s;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned data,
                              Adaptive_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if (data >= M.data_symbols) AC_Error("invalid data symbol");
#endif

  unsigned init_base = base;
  unsigned x = Product_64(length, M.distribution[data]);   // compute products

  base  += x;                                               // update interval
  length = Product_64(length, M.distribution[data+1]) - x;

  if (init_base > base) propagate_carry();                 // overflow = carry

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization

  ++M.symbol_count[data];
  if (--M.symbols_until_update == 0) M.update(true);  // periodic model update
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Adaptive_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned n, s, x, y;

  if (M.decoder_table) {              // use table look-up for faster decoding

    unsigned dv = Division_64(value, length);
    unsigned t = dv >> M.table_shift;
  
    s = M.decoder_table[t];         // initial decision based on table look-up
    n = M.decoder_table[t+1] + 1;

    while (n > s + 1) {                        // finish with bisection search
      unsigned m = (s + n) >> 1;
      if (M.distribution[m] > dv) n = m; else s = m;
    }
                                                           // compute products
    x = Product_64(length, M.distribution[s]);
    y = Product_64(length, M.distribution[s+1]);
  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -