⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arithmetic_codec.cpp

📁 算术编码快速算法文档和源代码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                       ****************************                        -
//                        ARITHMETIC CODING EXAMPLES                         -
//                       ****************************                        -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Fast arithmetic coding implementation                                     -
// -> double-precision floating-point arithmetic                             -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Version 1.00  -  April 25, 2004                                           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                                  WARNING                                  -
//                                 =========                                 -
//                                                                           -
// The only purpose of this program is to demonstrate the basic principles   -
// of arithmetic coding. It is provided as is, without any express or        -
// implied warranty, without even the warranty of fitness for any particular -
// purpose, or that the implementations are correct.                         -
//                                                                           -
// Permission to copy and redistribute this code is hereby granted, provided -
// that this warning and copyright notices are not removed or altered.       -
//                                                                           -
// Copyright (c) 2004 by Amir Said (said@ieee.org) &                         -
//                       William A. Pearlman (pearlw@ecse.rpi.edu)           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// A description of the arithmetic coding method used here is available in   -
//                                                                           -
// Lossless Compression Handbook, ed. K. Sayood                              -
// Chapter 5: Arithmetic Coding (A. Said), pp. 101-152, Academic Press, 2003 -
//                                                                           -
// A. Said, Introduction to Arithetic Coding Theory and Practice             -
// HP Labs report HPL-2004-76  -  http://www.hpl.hp.com/techreports/         -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


// - - Inclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#include <math.h>
#include <stdlib.h>
#include "arithmetic_codec.h"


// - - Constants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

      // This encoder saves data 2 bytes a time: renormalization factor = 2^16
const double AC__OutputFactor   = double(0x10000);                 // D = 2^16
const double AC__MinLength      = 1.0 / double(0x10000);        // 1/D = 2^-16
const double AC__LeastSignifBit = 1.0 / double(0x1000000) / double(0x1000000);
const double AC__Leakage        = 2.0 * AC__LeastSignifBit;

const unsigned BM__MaxCount  = 1 << 14;     // Maximum bit count for Bit_Model
const unsigned DM__MaxCount  = 1 << 17; // Maximum symbol count for Data_Model


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Static functions  - - - - - - - - - - - - - - - - - - - - - - - - - - -

static void AC_Error(const char * msg)
{
  fprintf(stderr, "\n\n -> Arithmetic coding error: ");
  fputs(msg, stderr);
  fputs("\n Execution terminated!\n", stderr);
  exit(1);
}


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Coding implementations  - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::propagate_carry(void)
{
  base -= 1.0;                  // carry propagation on compressed data buffer
  unsigned char * p;
  for (p = ac_pointer - 1; *p == 0xFFU; p--) *p = 0;
  ++*p;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_enc_interval(void)
{
                     // rescale arithmetic encoder interval, output data bytes
  do {
    unsigned a = unsigned(base *= AC__OutputFactor);
    *ac_pointer++ = (unsigned char) (a >> 8);
    *ac_pointer++ = (unsigned char) (a & 0xFF);
    base -= double(a);
  } while ((length *= AC__OutputFactor) <= AC__MinLength);
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_dec_interval(void)
{
                      // rescale arithmetic decoder interval, input data bytes
  do {
    unsigned a = unsigned(base *= AC__OutputFactor);
    base -= double(a);
    value = (AC__OutputFactor * value - double(a)) + AC__LeastSignifBit *
            (256.0 * double(ac_pointer[0]) + double(ac_pointer[1]));
    ac_pointer += 2;
  } while ((length *= AC__OutputFactor) <= AC__MinLength);
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bit(unsigned bit)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif
                                              // encode assuming p0 = p1 = 1/2
  double x = 0.5 * length;                             // compute middle point

  if (bit == 0)                             // update interval base and length 
    length  = x;
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) propagate_carry();                  // check if carry bit
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_enc_interval();
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bit(void)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  double x = 0.5 * length;                    // compute interval middle point
  unsigned bit = (value + AC__LeastSignifBit >= base + x); // decode bit value

  if (bit == 0)                             // update interval base and length 
    length  = x;
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) {                     // decoder does not propagate carry
      base   -= 1.0;                                         // shift interval
      value  -= 1.0;
    }
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_dec_interval();

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bits(unsigned data,
                                unsigned bits)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
  if (data >= (1U << bits)) AC_Error("invalid data");
#endif

  unsigned symbols = 1U << bits;                              // alphabet size
  double y, d = length / symbols;               // assume uniform distribution
                                                           // compute products
  if (data == symbols - 1)
    y = base + length;                            // avoid multiplication by 1
  else
    y = base + d * (data + 1);
                                                           // set new interval
  base  += d * data;
  length = y - base;

  if (base >= 1.0) propagate_carry();                    // check if carry bit

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_enc_interval();
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bits(unsigned bits)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
#endif

  unsigned s = 0, n = 1U << bits, m = n >> 1;
  double x = base, y = base + length, d = length / n;
  double shifted_value = value + AC__LeastSignifBit;

                   // bissection search of index in arithmetic coding interval
  do {
    double z = base + d * m;
    if (z > shifted_value) {
      y = z;                                          // code value is smaller
      n = m;
    }
    else {
      x = z;                                  // code value is larger or equal
      s = m;
    }
  } while ((m = (s + n) >> 1) != s);
                                                           // set new interval
  base   = x;
  length = y - x;

  if (base >= 1.0) {                       // decoder does not propagate carry
    base   -= 1.0;                                           // shift interval
    value  -= 1.0;
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_dec_interval();

  return s;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  double x = length * M.bit_0_prob;                  // compute product l x p0

  if (bit == 0)                             // update interval base and length 
    length  = x;
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) propagate_carry();                  // check if carry bit
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_enc_interval();
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  double x = length * M.bit_0_prob;         // compute interval-division point
  unsigned bit = (value + AC__LeastSignifBit >= base + x); // decode bit value

  if (bit == 0)                             // update interval base and length 
    length  = x;
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) {                     // decoder does not propagate carry
      base   -= 1.0;                                         // shift interval
      value  -= 1.0;
    }
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_dec_interval();

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  double x = length * M.bit_0_prob;                  // compute product l x p0

  if (bit == 0) {                           // update interval length and base
    length  = x;
    ++M.bit_0_count;
  }
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) propagate_carry();                  // check if carry bit
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_enc_interval();

  if (--M.bits_until_update == 0) M.update();         // periodic model update
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  double x = length * M.bit_0_prob;         // compute interval-division point
  unsigned bit = (value + AC__LeastSignifBit >= base + x); // decode bit value

  if (bit == 0) {                           // update interval length and base
    length  = x;
    ++M.bit_0_count;
  }
  else {
    base   += x;
    length -= x;
    if (base >= 1.0) {                     // decoder does not propagate carry
      base   -= 1.0;                                         // shift interval
      value  -= 1.0;
    }
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_dec_interval();

  if (--M.bits_until_update == 0) M.update();         // periodic model update

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned data,
                              Static_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if (data >= M.data_symbols) AC_Error("invalid data symbol");
#endif

  double y;
                                                           // compute products
  if (data == M.data_symbols - 1)
    y = base + length;                            // avoid multiplication by 1
  else
    y = base + length * M.distribution[data+1];
                                                           // set new interval
  base  += length * M.distribution[data];
  length = y - base;

  if (base >= 1.0) propagate_carry();                    // check if carry bit

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_enc_interval();
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Static_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned s = 0, n = M.data_symbols, m = n >> 1;
  double x = base, y = base + length;
  double shifted_value = value + AC__LeastSignifBit;

                   // bissection search of index in arithmetic coding interval
  do {
    double z = base + length * M.distribution[m];
    if (z > shifted_value) {
      y = z;                                          // code value is smaller
      n = m;
    }
    else {
      x = z;                                  // code value is larger or equal
      s = m;
    }
  } while ((m = (s + n) >> 1) != s);
                                                           // set new interval
  base   = x;
  length = y - x;

  if (base >= 1.0) {                       // decoder does not propagate carry
    base   -= 1.0;                                           // shift interval
    value  -= 1.0;
  }

  if ((length -= AC__Leakage) <= AC__MinLength)     // if renormalization time
    renorm_dec_interval();

  return s;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned data,
                              Adaptive_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if (data >= M.data_symbols) AC_Error("invalid data symbol");
#endif

  double y;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -