⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arithmetic_codec.cpp

📁 算术编码快速算法文档和源代码
💻 CPP
📖 第 1 页 / 共 3 页
字号:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                       ****************************                        -
//                        ARITHMETIC CODING EXAMPLES                         -
//                       ****************************                        -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Fast arithmetic coding implementation                                     -
// -> 32-bit variables, 32-bit product, periodic updates, sorted symbols     -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// Version 1.00  -  April 25, 2004                                           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
//                                  WARNING                                  -
//                                 =========                                 -
//                                                                           -
// The only purpose of this program is to demonstrate the basic principles   -
// of arithmetic coding. It is provided as is, without any express or        -
// implied warranty, without even the warranty of fitness for any particular -
// purpose, or that the implementations are correct.                         -
//                                                                           -
// Permission to copy and redistribute this code is hereby granted, provided -
// that this warning and copyright notices are not removed or altered.       -
//                                                                           -
// Copyright (c) 2004 by Amir Said (said@ieee.org) &                         -
//                       William A. Pearlman (pearlw@ecse.rpi.edu)           -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//                                                                           -
// A description of the arithmetic coding method used here is available in   -
//                                                                           -
// Lossless Compression Handbook, ed. K. Sayood                              -
// Chapter 5: Arithmetic Coding (A. Said), pp. 101-152, Academic Press, 2003 -
//                                                                           -
// A. Said, Introduction to Arithetic Coding Theory and Practice             -
// HP Labs report HPL-2004-76  -  http://www.hpl.hp.com/techreports/         -
//                                                                           -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


// - - Inclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#include <stdlib.h>
#include "arithmetic_codec.h"


// - - Constants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

const unsigned AC__MinLength = 0x01000000U;   // threshold for renormalization
const unsigned AC__MaxLength = 0xFFFFFFFFU;      // maximum AC interval length

                                           // Maximum values for binary models
const unsigned BM__LengthShift = 13;     // length bits discarded before mult.
const unsigned BM__MaxCount    = 1 << BM__LengthShift;  // for adaptive models

                                          // Maximum values for general models
const unsigned DM__LengthShift = 15;     // length bits discarded before mult.
const unsigned DM__MaxCount    = 1 << DM__LengthShift;  // for adaptive models


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Static functions  - - - - - - - - - - - - - - - - - - - - - - - - - - -

static void AC_Error(const char * msg)
{
  fprintf(stderr, "\n\n -> Arithmetic coding error: ");
  fputs(msg, stderr);
  fputs("\n Execution terminated!\n", stderr);
  exit(1);
}


// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - Coding implementations  - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::propagate_carry(void)
{
  unsigned char * p;            // carry propagation on compressed data buffer
  for (p = ac_pointer - 1; *p == 0xFFU; p--) *p = 0;
  ++*p;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_enc_interval(void)
{
  do {                                          // output and discard top byte
    *ac_pointer++ = (unsigned char)(base >> 24);
    base <<= 8;
  } while ((length <<= 8) < AC__MinLength);        // length multiplied by 256
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

inline void Arithmetic_Codec::renorm_dec_interval(void)
{
  do {                                              // read least-signif. byte
    value = (value << 8) | unsigned(*++ac_pointer);
  } while ((length <<= 8) < AC__MinLength);        // length multiplied by 256
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bit(unsigned bit)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  length >>= 1;                                              // halve interval
  if (bit) {
    unsigned init_base = base;
    base += length;                                               // move base
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bit(void)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  length >>= 1;                                              // halve interval
  unsigned bit = (value >= length);                              // decode bit
  if (bit) value -= length;                                       // move base

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return bit;                                         // return data bit value
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::put_bits(unsigned data, unsigned bits)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
  if (data >= (1U << bits)) AC_Error("invalid data");
#endif

  unsigned init_base = base;
  base += data * (length >>= bits);            // new interval base and length

  if (init_base > base) propagate_carry();                 // overflow = carry
  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::get_bits(unsigned bits)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
  if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits");
#endif

  unsigned s = value / (length >>= bits);      // decode symbol, change length

  value -= length * s;                                      // update interval
  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return s;
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif
            // multiplication approximated by two bit shifts and two additions

  unsigned x = length - (length >> M.shift_a) - (length >> M.shift_b);

                                                            // update interval
  if (M.least_probable_bit ^ (bit != 0))
    length  = x;                           // simplest case is the most common
  else {
    unsigned init_base = base;
    base   += x;
    length -= x;
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Static_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif
            // multiplication approximated by two bit shifts and two additions

  unsigned x = length - (length >> M.shift_a) - (length >> M.shift_b);

  unsigned mpb = (value < x);                                      // decision
                                                    // update & shift interval
  if (mpb)
    length  = x;
  else {
    value  -= x;                                  // shifted interval base = 0
    length -= x;
  }

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  return mpb ^ M.least_probable_bit;                     // return decoded bit
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned bit,
                              Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
#endif

  unsigned x = M.mpb_prob * (length >> BM__LengthShift);     // product l x pm
                                                            // update interval
  if (M.least_probable_bit ^ (bit != 0))
    length = x;                            // simplest case is the most common
  else {
    ++M.lpb_count;
    unsigned init_base = base;
    base   += x;
    length -= x;
    if (init_base > base) propagate_carry();               // overflow = carry
  }

  if (length < AC__MinLength) renorm_enc_interval();        // renormalization

  if (--M.bits_until_update == 0) M.update();         // periodic model update
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

unsigned Arithmetic_Codec::decode(Adaptive_Bit_Model & M)
{
#ifdef _DEBUG
  if (mode != 2) AC_Error("decoder not initialized");
#endif

  unsigned x = M.mpb_prob * (length >> BM__LengthShift);     // product l x pm
  unsigned mpb = (value < x);                                      // decision
                                                            // update interval
  if (mpb)
    length = x;
  else {
    ++M.lpb_count;
    value  -= x;
    length -= x;
  }

  if (length < AC__MinLength) renorm_dec_interval();        // renormalization

  if (--M.bits_until_update) return mpb ^ M.least_probable_bit;  // return bit
                                                        
  unsigned bit = mpb ^ M.least_probable_bit;  // save bit value before changes
  M.update();                                         // periodic model update
  return bit;                                            // return decoded bit
}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

void Arithmetic_Codec::encode(unsigned data,
                              Static_Data_Model & M)
{
#ifdef _DEBUG
  if (mode != 1) AC_Error("encoder not initialized");
  if (data >= M.data_symbols) AC_Error("invalid data symbol");
#endif

  unsigned x, init_base = base, s = M.rank[data];             // symbol = rank
                                                           // compute products
  if (s == M.most_probable_symbol) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -