📄 pa.c
字号:
/* Subroutines for insn-output.c for HPPA. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.cThis file is part of GNU CC.GNU CC is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2, or (at your option)any later version.GNU CC is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GNU CC; see the file COPYING. If not, write tothe Free Software Foundation, 59 Temple Place - Suite 330,Boston, MA 02111-1307, USA. */#include "config.h"#include "system.h"#include "rtl.h"#include "regs.h"#include "hard-reg-set.h"#include "real.h"#include "insn-config.h"#include "conditions.h"#include "output.h"#include "insn-attr.h"#include "flags.h"#include "tree.h"#include "expr.h"#include "optabs.h"#include "libfuncs.h"#include "reload.h"#include "c-tree.h"#include "integrate.h"#include "function.h"#include "obstack.h"#include "toplev.h"#include "ggc.h"#include "recog.h"#include "tm_p.h"#include "target.h"#include "target-def.h"#ifndef DO_FRAME_NOTES#ifdef INCOMING_RETURN_ADDR_RTX#define DO_FRAME_NOTES 1#else#define DO_FRAME_NOTES 0#endif#endif#if DO_FRAME_NOTES#define FRP(INSN) \ do \ { \ rtx insn = INSN; \ RTX_FRAME_RELATED_P (insn) = 1; \ } \ while (0)#else#define FRP(INSN) INSN#endifstatic inline rtx force_mode PARAMS ((enum machine_mode, rtx));static void pa_combine_instructions PARAMS ((rtx));static int pa_can_combine_p PARAMS ((rtx, rtx, rtx, int, rtx, rtx, rtx));static int forward_branch_p PARAMS ((rtx));static int shadd_constant_p PARAMS ((int));static void pa_add_gc_roots PARAMS ((void));static void mark_deferred_plabels PARAMS ((void *));static void compute_zdepwi_operands PARAMS ((unsigned HOST_WIDE_INT, unsigned *));static int compute_movstrsi_length PARAMS ((rtx));static bool pa_assemble_integer PARAMS ((rtx, unsigned int, int));static void remove_useless_addtr_insns PARAMS ((rtx, int));static void store_reg PARAMS ((int, int, int));static void load_reg PARAMS ((int, int, int));static void set_reg_plus_d PARAMS ((int, int, int));static void pa_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));static int pa_adjust_cost PARAMS ((rtx, rtx, rtx, int));static int pa_adjust_priority PARAMS ((rtx, int));static int pa_issue_rate PARAMS ((void));/* Save the operands last given to a compare for use when we generate a scc or bcc insn. */rtx hppa_compare_op0, hppa_compare_op1;enum cmp_type hppa_branch_type;/* Which cpu we are scheduling for. */enum processor_type pa_cpu;/* String to hold which cpu we are scheduling for. */const char *pa_cpu_string;/* Which architecture we are generating code for. */enum architecture_type pa_arch;/* String to hold which architecture we are generating code for. */const char *pa_arch_string;/* Counts for the number of callee-saved general and floating point registers which were saved by the current function's prologue. */static int gr_saved, fr_saved;static rtx find_addr_reg PARAMS ((rtx));/* Keep track of the number of bytes we have output in the CODE subspaces during this compilation so we'll know when to emit inline long-calls. */unsigned int total_code_bytes;/* Variables to handle plabels that we discover are necessary at assembly output time. They are output after the current function. */struct deferred_plabel{ rtx internal_label; char *name;} *deferred_plabels = 0;int n_deferred_plabels = 0;/* Initialize the GCC target structure. */#undef TARGET_ASM_ALIGNED_HI_OP#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"#undef TARGET_ASM_ALIGNED_SI_OP#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"#undef TARGET_ASM_ALIGNED_DI_OP#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"#undef TARGET_ASM_UNALIGNED_HI_OP#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP#undef TARGET_ASM_UNALIGNED_SI_OP#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP#undef TARGET_ASM_UNALIGNED_DI_OP#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP#undef TARGET_ASM_INTEGER#define TARGET_ASM_INTEGER pa_assemble_integer#undef TARGET_ASM_FUNCTION_PROLOGUE#define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue#undef TARGET_ASM_FUNCTION_EPILOGUE#define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue#undef TARGET_SCHED_ADJUST_COST#define TARGET_SCHED_ADJUST_COST pa_adjust_cost#undef TARGET_SCHED_ADJUST_PRIORITY#define TARGET_SCHED_ADJUST_PRIORITY pa_adjust_priority#undef TARGET_SCHED_ISSUE_RATE#define TARGET_SCHED_ISSUE_RATE pa_issue_ratestruct gcc_target targetm = TARGET_INITIALIZER;voidoverride_options (){ /* Default to 7100LC scheduling. */ if (pa_cpu_string && ! strcmp (pa_cpu_string, "7100")) { pa_cpu_string = "7100"; pa_cpu = PROCESSOR_7100; } else if (pa_cpu_string && ! strcmp (pa_cpu_string, "700")) { pa_cpu_string = "700"; pa_cpu = PROCESSOR_700; } else if (pa_cpu_string == NULL || ! strcmp (pa_cpu_string, "7100LC")) { pa_cpu_string = "7100LC"; pa_cpu = PROCESSOR_7100LC; } else if (pa_cpu_string && ! strcmp (pa_cpu_string, "7200")) { pa_cpu_string = "7200"; pa_cpu = PROCESSOR_7200; } else if (pa_cpu_string && ! strcmp (pa_cpu_string, "8000")) { pa_cpu_string = "8000"; pa_cpu = PROCESSOR_8000; } else { warning ("unknown -mschedule= option (%s).\nValid options are 700, 7100, 7100LC, 7200, and 8000\n", pa_cpu_string); } /* Set the instruction set architecture. */ if (pa_arch_string && ! strcmp (pa_arch_string, "1.0")) { pa_arch_string = "1.0"; pa_arch = ARCHITECTURE_10; target_flags &= ~(MASK_PA_11 | MASK_PA_20); } else if (pa_arch_string && ! strcmp (pa_arch_string, "1.1")) { pa_arch_string = "1.1"; pa_arch = ARCHITECTURE_11; target_flags &= ~MASK_PA_20; target_flags |= MASK_PA_11; } else if (pa_arch_string && ! strcmp (pa_arch_string, "2.0")) { pa_arch_string = "2.0"; pa_arch = ARCHITECTURE_20; target_flags |= MASK_PA_11 | MASK_PA_20; } else if (pa_arch_string) { warning ("unknown -march= option (%s).\nValid options are 1.0, 1.1, and 2.0\n", pa_arch_string); } if (flag_pic && TARGET_PORTABLE_RUNTIME) { warning ("PIC code generation is not supported in the portable runtime model\n"); } if (flag_pic && TARGET_FAST_INDIRECT_CALLS) { warning ("PIC code generation is not compatible with fast indirect calls\n"); } if (! TARGET_GAS && write_symbols != NO_DEBUG) { warning ("-g is only supported when using GAS on this processor,"); warning ("-g option disabled"); write_symbols = NO_DEBUG; } /* We only support the "big PIC" model now. And we always generate PIC code when in 64bit mode. */ if (flag_pic == 1 || TARGET_64BIT) flag_pic = 2; /* We can't guarantee that .dword is available for 32-bit targets. */ if (UNITS_PER_WORD == 4) targetm.asm_out.aligned_op.di = NULL; /* The unaligned ops are only available when using GAS. */ if (!TARGET_GAS) { targetm.asm_out.unaligned_op.hi = NULL; targetm.asm_out.unaligned_op.si = NULL; targetm.asm_out.unaligned_op.di = NULL; } /* Register global variables with the garbage collector. */ pa_add_gc_roots ();}/* Return non-zero only if OP is a register of mode MODE, or CONST0_RTX. */intreg_or_0_operand (op, mode) rtx op; enum machine_mode mode;{ return (op == CONST0_RTX (mode) || register_operand (op, mode));}/* Return non-zero if OP is suitable for use in a call to a named function. For 2.5 try to eliminate either call_operand_address or function_label_operand, they perform very similar functions. */intcall_operand_address (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED;{ return (GET_MODE (op) == word_mode && CONSTANT_P (op) && ! TARGET_PORTABLE_RUNTIME);}/* Return 1 if X contains a symbolic expression. We know these expressions will have one of a few well defined forms, so we need only check those forms. */intsymbolic_expression_p (x) register rtx x;{ /* Strip off any HIGH. */ if (GET_CODE (x) == HIGH) x = XEXP (x, 0); return (symbolic_operand (x, VOIDmode));}intsymbolic_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED;{ switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; }}/* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */intsymbolic_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED;{ if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);}/* Return 1 if the operand is either a register or a memory operand that is not symbolic. */intreg_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode;{ if (register_operand (op, mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0;}/* Return 1 if the operand is either a register, zero, or a memory operand that is not symbolic. */intreg_or_0_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode;{ if (register_operand (op, mode)) return 1; if (op == CONST0_RTX (mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0;}/* Return 1 if the operand is a register operand or a non-symbolic memory operand after reload. This predicate is used for branch patterns that internally handle register reloading. We need to accept non-symbolic memory operands after reload to ensure that the pattern is still valid if reload didn't find a hard register for the operand. */intreg_before_reload_operand (op, mode) register rtx op; enum machine_mode mode;{ /* Don't accept a SUBREG since it will need a reload. */ if (GET_CODE (op) == SUBREG) return 0; if (register_operand (op, mode)) return 1; if (reload_completed && memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0;}/* Accept any constant that can be moved in one instruction into a general register. */intcint_ok_for_move (intval) HOST_WIDE_INT intval;{ /* OK if ldo, ldil, or zdepi, can be used. */ return (CONST_OK_FOR_LETTER_P (intval, 'J') || CONST_OK_FOR_LETTER_P (intval, 'N') || CONST_OK_FOR_LETTER_P (intval, 'K'));}/* Accept anything that can be moved in one instruction into a general register. */intmove_operand (op, mode) rtx op; enum machine_mode mode;{ if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONSTANT_P_RTX) return 1; if (GET_CODE (op) == CONST_INT) return cint_ok_for_move (INTVAL (op)); if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); /* We consider a LO_SUM DLT reference a move_operand now since it has been merged into the normal movsi/movdi patterns. */ if (GET_CODE (op) == LO_SUM && GET_CODE (XEXP (op, 0)) == REG && REG_OK_FOR_BASE_P (XEXP (op, 0)) && GET_CODE (XEXP (op, 1)) == UNSPEC && GET_MODE (op) == Pmode) return 1; /* Since move_operand is only used for source operands, we can always allow scaled indexing! */ if (! TARGET_DISABLE_INDEXING && GET_CODE (op) == PLUS
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -