⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ia64.h

📁 gcc3.2.1源代码
💻 H
📖 第 1 页 / 共 5 页
字号:
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))#define STRICT_ALIGNMENT 1/* Define this if you wish to imitate the way many other C compilers handle   alignment of bitfields and the structures that contain them.   The behavior is that the type written for a bitfield (`int', `short', or   other integer type) imposes an alignment for the entire structure, as if the   structure really did contain an ordinary field of that type.  In addition,   the bitfield is placed within the structure so that it would fit within such   a field, not crossing a boundary for it.  */#define PCC_BITFIELD_TYPE_MATTERS 1/* An integer expression for the size in bits of the largest integer machine   mode that should actually be used.  *//* Allow pairs of registers to be used, which is the intent of the default.  */#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)/* A code distinguishing the floating point format of the target machine.  */#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT/* By default, the C++ compiler will use function addresses in the   vtable entries.  Setting this non-zero tells the compiler to use   function descriptors instead.  The value of this macro says how   many words wide the descriptor is (normally 2).  It is assumed   that the address of a function descriptor may be treated as a   pointer to a function.  */#define TARGET_VTABLE_USES_DESCRIPTORS 2/* Layout of Source Language Data Types */#define INT_TYPE_SIZE 32#define SHORT_TYPE_SIZE 16#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)#define MAX_LONG_TYPE_SIZE 64#define LONG_LONG_TYPE_SIZE 64#define CHAR_TYPE_SIZE 8#define FLOAT_TYPE_SIZE 32#define DOUBLE_TYPE_SIZE 64#define LONG_DOUBLE_TYPE_SIZE 128/* Tell real.c that this is the 80-bit Intel extended float format   packaged in a 128-bit entity.  */#define INTEL_EXTENDED_IEEE_FORMAT 1#define DEFAULT_SIGNED_CHAR 1/* A C expression for a string describing the name of the data type to use for   size values.  The typedef name `size_t' is defined using the contents of the   string.  *//* ??? Needs to be defined for P64 code.  *//* #define SIZE_TYPE *//* A C expression for a string describing the name of the data type to use for   the result of subtracting two pointers.  The typedef name `ptrdiff_t' is   defined using the contents of the string.  See `SIZE_TYPE' above for more   information.  *//* ??? Needs to be defined for P64 code.  *//* #define PTRDIFF_TYPE *//* A C expression for a string describing the name of the data type to use for   wide characters.  The typedef name `wchar_t' is defined using the contents   of the string.  See `SIZE_TYPE' above for more information.  *//* #define WCHAR_TYPE *//* A C expression for the size in bits of the data type for wide characters.   This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  *//* #define WCHAR_TYPE_SIZE *//* Register Basics *//* Number of hardware registers known to the compiler.   We have 128 general registers, 128 floating point registers,   64 predicate registers, 8 branch registers, one frame pointer,   and several "application" registers.  */#define FIRST_PSEUDO_REGISTER 335/* Ranges for the various kinds of registers.  */#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)#define GENERAL_REGNO_P(REGNO) \  (GR_REGNO_P (REGNO)							\   || (REGNO) == FRAME_POINTER_REGNUM					\   || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)#define GR_REG(REGNO) ((REGNO) + 0)#define FR_REG(REGNO) ((REGNO) + 128)#define PR_REG(REGNO) ((REGNO) + 256)#define BR_REG(REGNO) ((REGNO) + 320)#define OUT_REG(REGNO) ((REGNO) + 120)#define IN_REG(REGNO) ((REGNO) + 112)#define LOC_REG(REGNO) ((REGNO) + 32)#define AR_CCV_REGNUM	330#define AR_UNAT_REGNUM  331#define AR_PFS_REGNUM	332#define AR_LC_REGNUM	333#define AR_EC_REGNUM	334#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \			     || (REGNO) == AR_UNAT_REGNUM)#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \			     && (REGNO) < FIRST_PSEUDO_REGISTER)#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \			   && (REGNO) < FIRST_PSEUDO_REGISTER)/* ??? Don't really need two sets of macros.  I like this one better because   it is less typing.  */#define R_GR(REGNO) GR_REG (REGNO)#define R_FR(REGNO) FR_REG (REGNO)#define R_PR(REGNO) PR_REG (REGNO)#define R_BR(REGNO) BR_REG (REGNO)/* An initializer that says which registers are used for fixed purposes all   throughout the compiled code and are therefore not available for general   allocation.   r0: constant 0   r1: global pointer (gp)   r12: stack pointer (sp)   r13: thread pointer (tp)   f0: constant 0.0   f1: constant 1.0   p0: constant true   fp: eliminable frame pointer *//* The last 16 stacked regs are reserved for the 8 input and 8 output   registers.  */#define FIXED_REGISTERS \{ /* General registers.  */				\  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  /* Floating-point registers.  */			\  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  /* Predicate registers.  */				\  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  /* Branch registers.  */				\  0, 0, 0, 0, 0, 0, 0, 0,				\  /*FP RA CCV UNAT PFS LC EC */				\     1, 1,  1,   1,  1, 0, 1				\ }/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered   (in general) by function calls as well as for fixed registers.  This   macro therefore identifies the registers that are not available for   general allocation of values that must live across function calls.  */#define CALL_USED_REGISTERS \{ /* General registers.  */				\  1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\  /* Floating-point registers.  */			\  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  /* Predicate registers.  */				\  1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  /* Branch registers.  */				\  1, 0, 0, 0, 0, 0, 1, 1,				\  /*FP RA CCV UNAT PFS LC EC */				\     1, 1,  1,   1,  1, 0, 1				\}/* Like `CALL_USED_REGISTERS' but used to overcome a historical   problem which makes CALL_USED_REGISTERS *always* include   all the FIXED_REGISTERS.  Until this problem has been   resolved this macro can be used to overcome this situation.   In particular, block_propagate() requires this list   be acurate, or we can remove registers which should be live.   This macro is used in regs_invalidated_by_call.  */#define CALL_REALLY_USED_REGISTERS \{ /* General registers.  */				\  1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\  /* Floating-point registers.  */			\  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  /* Predicate registers.  */				\  1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\  /* Branch registers.  */				\  1, 0, 0, 0, 0, 0, 1, 1,				\  /*FP RA CCV UNAT PFS LC EC */				\     0, 0,  1,   0,  1, 0, 0				\}/* Define this macro if the target machine has register windows.  This C   expression returns the register number as seen by the called function   corresponding to the register number OUT as seen by the calling function.   Return OUT if register number OUT is not an outbound register.  */#define INCOMING_REGNO(OUT) \  ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))/* Define this macro if the target machine has register windows.  This C   expression returns the register number as seen by the calling function   corresponding to the register number IN as seen by the called function.   Return IN if register number IN is not an inbound register.  */#define OUTGOING_REGNO(IN) \  ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))/* Define this macro if the target machine has register windows.  This   C expression returns true if the register is call-saved but is in the   register window.  */#define LOCAL_REGNO(REGNO) \  (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))/* Add any extra modes needed to represent the condition code.   CCImode is used to mark a single predicate register instead   of a register pair.  This is currently only used in reg_raw_mode   so that flow doesn't do something stupid.  */#define EXTRA_CC_MODES		CC(CCImode, "CCI")/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,   return the mode to be used for the comparison.  Must be defined if   EXTRA_CC_MODES is defined.  */#define SELECT_CC_MODE(OP,X,Y)  CCmode/* Order of allocation of registers *//* If defined, an initializer for a vector of integers, containing the numbers   of hard registers in the order in which GNU CC should prefer to use them   (from most preferred to least).   If this macro is not defined, registers are used lowest numbered first (all   else being equal).   One use of this macro is on machines where the highest numbered registers   must always be saved and the save-multiple-registers instruction supports   only sequences of consecutive registers.  On such machines, define   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered   allocatable register first.  *//* ??? Should the GR return value registers come before or after the rest   of the caller-save GRs?  */#define REG_ALLOC_ORDER							   \{									   \  /* Caller-saved general registers.  */				   \  R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \  R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \  R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \  R_GR (30), R_GR (31),							   \  /* Output registers.  */						   \  R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \  R_GR (126), R_GR (127),						   \  /* Caller-saved general registers, also used for return values.  */	   \  R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \  /* addl caller-saved general registers.  */				   \  R_GR (2), R_GR (3),							   \  /* Caller-saved FP registers.  */					   \  R_FR (6), R_FR (7),							   \  /* Caller-saved FP registers, used for parameters and return values.  */ \

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -