⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eccurve.java

📁 J2ME加密算法的代码!里面包括常用的算法
💻 JAVA
字号:
package org.bouncycastle.math.ec;import java.math.BigInteger;import java.util.Random;/** * base class for an elliptic curve */public abstract class ECCurve{    ECFieldElement a, b;    public abstract ECFieldElement fromBigInteger(BigInteger x);    public abstract ECPoint decodePoint(byte[] encoded);    public abstract ECPoint getInfinity();    public ECFieldElement getA()    {        return a;    }    public ECFieldElement getB()    {        return b;    }    /**     * Elliptic curve over Fp     */    public static class Fp extends ECCurve    {        BigInteger q;        ECPoint.Fp infinity;        public Fp(BigInteger q, BigInteger a, BigInteger b)        {            this.q = q;            this.a = fromBigInteger(a);            this.b = fromBigInteger(b);            this.infinity = new ECPoint.Fp(this, null, null);        }        public BigInteger getQ()        {            return q;        }        public ECFieldElement fromBigInteger(BigInteger x)        {            return new ECFieldElement.Fp(this.q, x);        }        /**         * Decode a point on this curve from its ASN.1 encoding. The different         * encodings are taken account of, including point compression for         * <code>F<sub>p</sub><code> (X9.62 s 4.2.1 pg 17).         * @return The decoded point.         */        public ECPoint decodePoint(byte[] encoded)        {            ECPoint p = null;            switch (encoded[0])            {                // compressed            case 0x02:            case 0x03:                int ytilde = encoded[0] & 1;                byte[]  i = new byte[encoded.length - 1];                System.arraycopy(encoded, 1, i, 0, i.length);                ECFieldElement x = new ECFieldElement.Fp(this.q, new BigInteger(1, i));                ECFieldElement alpha = x.multiply(x.square()).add(x.multiply(a).add(b));                ECFieldElement beta = alpha.sqrt();                //                // if we can't find a sqrt we haven't got a point on the                // curve - run!                //                if (beta == null)                {                    throw new RuntimeException("Invalid point compression");                }                int bit0 = (beta.toBigInteger().testBit(0) ? 1 : 0);                if (bit0 == ytilde)                {                    p = new ECPoint.Fp(this, x, beta, true);                }                else                {                    p = new ECPoint.Fp(this, x,                        new ECFieldElement.Fp(this.q, q.subtract(beta.toBigInteger())), true);                }                break;            case 0x04:                byte[]  xEnc = new byte[(encoded.length - 1) / 2];                byte[]  yEnc = new byte[(encoded.length - 1) / 2];                System.arraycopy(encoded, 1, xEnc, 0, xEnc.length);                System.arraycopy(encoded, xEnc.length + 1, yEnc, 0, yEnc.length);                p = new ECPoint.Fp(this,                        new ECFieldElement.Fp(this.q, new BigInteger(1, xEnc)),                        new ECFieldElement.Fp(this.q, new BigInteger(1, yEnc)));                break;            default:                throw new RuntimeException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16));            }            return p;        }        public ECPoint getInfinity()        {            return infinity;        }        public boolean equals(            Object anObject)         {            if (anObject == this)             {                return true;            }            if (!(anObject instanceof ECCurve.Fp))             {                return false;            }            ECCurve.Fp other = (ECCurve.Fp) anObject;            return this.q.equals(other.q)                     && a.equals(other.a) && b.equals(other.b);        }        public int hashCode()         {            return a.hashCode() ^ b.hashCode() ^ q.hashCode();        }    }    /**     * Elliptic curves over F2m. The Weierstrass equation is given by     * <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.     */    public static class F2m extends ECCurve    {        /**         * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.         */        private int m;        /**         * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +         * x<sup>k</sup> + 1</code> represents the reduction polynomial         * <code>f(z)</code>.<br>         * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.<br>         */        private int k1;        /**         * TPB: Always set to <code>0</code><br>         * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.<br>         */        private int k2;        /**         * TPB: Always set to <code>0</code><br>         * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.<br>         */        private int k3;        private ECPoint.F2m infinity;        /**         * Constructor for Trinomial Polynomial Basis (TPB).         * @param m  The exponent <code>m</code> of         * <code>F<sub>2<sup>m</sup></sub></code>.         * @param k The integer <code>k</code> where <code>x<sup>m</sup> +         * x<sup>k</sup> + 1</code> represents the reduction         * polynomial <code>f(z)</code>.         * @param a The coefficient <code>a</code> in the Weierstrass equation         * for non-supersingular elliptic curves over         * <code>F<sub>2<sup>m</sup></sub></code>.         * @param b The coefficient <code>b</code> in the Weierstrass equation         * for non-supersingular elliptic curves over         * <code>F<sub>2<sup>m</sup></sub></code>.         */        public F2m(            int m,             int k,             BigInteger a,             BigInteger b)        {            this(m, k, 0, 0, a, b);        }        /**         * Constructor for Pentanomial Polynomial Basis (PPB).         * @param m  The exponent <code>m</code> of         * <code>F<sub>2<sup>m</sup></sub></code>.         * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.         * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.         * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>         * represents the reduction polynomial <code>f(z)</code>.         * @param a The coefficient <code>a</code> in the Weierstrass equation         * for non-supersingular elliptic curves over         * <code>F<sub>2<sup>m</sup></sub></code>.         * @param b The coefficient <code>b</code> in the Weierstrass equation         * for non-supersingular elliptic curves over         * <code>F<sub>2<sup>m</sup></sub></code>.         */        public F2m(            int m,             int k1,             int k2,             int k3,            BigInteger a,             BigInteger b)        {            this.m = m;            this.k1 = k1;            this.k2 = k2;            this.k3 = k3;                        if (k1 == 0)            {                throw new IllegalArgumentException("k1 must be > 0");            }            if (k2 == 0)            {                if (k3 != 0)                {                    throw new IllegalArgumentException("k3 must be 0 if k2 == 0");                }            }            else            {                if (k2 <= k1)                {                    throw new IllegalArgumentException("k2 must be > k1");                }                if (k3 <= k2)                {                    throw new IllegalArgumentException("k3 must be > k2");                }            }            this.a = fromBigInteger(a);            this.b = fromBigInteger(b);            this.infinity = new ECPoint.F2m(this, null, null);        }                public ECFieldElement fromBigInteger(BigInteger x)        {            return new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3, x);        }        /* (non-Javadoc)         * @see org.bouncycastle.math.ec.ECCurve#decodePoint(byte[])         */        public ECPoint decodePoint(byte[] encoded)        {            ECPoint p = null;            switch (encoded[0])            {                // compressed            case 0x02:            case 0x03:                byte[] enc = new byte[encoded.length - 1];                System.arraycopy(encoded, 1, enc, 0, enc.length);                if (encoded[0] == 0x02)                 {                        p = decompressPoint(enc, 0);                }                else                 {                        p = decompressPoint(enc, 1);                }                break;            case 0x04:                byte[] xEnc = new byte[(encoded.length - 1) / 2];                byte[] yEnc = new byte[(encoded.length - 1) / 2];                System.arraycopy(encoded, 1, xEnc, 0, xEnc.length);                System.arraycopy(encoded, xEnc.length + 1, yEnc, 0, yEnc.length);                p = new ECPoint.F2m(this,                    new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3,                        new BigInteger(1, xEnc)),                    new ECFieldElement.F2m(this.m, this.k1, this.k2, this.k3,                        new BigInteger(1, yEnc)), false);                break;            default:                throw new RuntimeException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16));            }            return p;        }        public ECPoint getInfinity()        {            return infinity;        }        /**         * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).         *          * @param xEnc         *            The encoding of field element xp.         * @param ypBit         *            ~yp, an indication bit for the decompression of yp.         * @return the decompressed point.         */        private ECPoint decompressPoint(            byte[] xEnc,             int ypBit)        {            ECFieldElement xp = new ECFieldElement.F2m(                    this.m, this.k1, this.k2, this.k3, new BigInteger(1, xEnc));            ECFieldElement yp = null;            if (xp.x.equals(ECConstants.ZERO))            {                yp = (ECFieldElement.F2m)b;                for (int i = 0; i < m - 1; i++)                {                    yp = yp.square();                }            }            else            {                ECFieldElement beta = xp.add(a).add(                        b.multiply(xp.square().invert()));                ECFieldElement z = solveQuadradicEquation(beta);                if (z == null)                {                    throw new RuntimeException("Invalid point compression");                }                int zBit = 0;                if (z.x.testBit(0))                {                    zBit = 1;                }                if (zBit != ypBit)                {                    z = z.add(new ECFieldElement.F2m(this.m, this.k1, this.k2,                            this.k3, ECConstants.ONE));                }                yp = xp.multiply(z);            }                        return new ECPoint.F2m(this, xp, yp);        }                /**         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62         * D.1.6) The other solution is <code>z + 1</code>.         *          * @param beta         *            The value to solve the qradratic equation for.         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or         *         <code>null</code> if no solution exists.         */        private ECFieldElement solveQuadradicEquation(ECFieldElement beta)        {            ECFieldElement zeroElement = new ECFieldElement.F2m(                    this.m, this.k1, this.k2, this.k3, ECConstants.ZERO);            if (beta.x.equals(ECConstants.ZERO))            {                return zeroElement;            }            ECFieldElement z = null;            ECFieldElement gamma = zeroElement;            Random rand = new Random();            do            {                ECFieldElement t = new ECFieldElement.F2m(this.m, this.k1,                        this.k2, this.k3, new BigInteger(m, rand));                z = zeroElement;                ECFieldElement w = beta;                for (int i = 1; i <= m - 1; i++)                {                    ECFieldElement w2 = w.square();                    z = z.square().add(w2.multiply(t));                    w = w2.add(beta);                }                if (!w.x.equals(ECConstants.ZERO))                {                    return null;                }                gamma = z.square().add(z);            }            while (gamma.toBigInteger().equals(ECConstants.ZERO));            return z;        }                public boolean equals(            Object anObject)        {            if (anObject == this)             {                return true;            }            if (!(anObject instanceof ECCurve.F2m))             {                return false;            }            ECCurve.F2m other = (ECCurve.F2m)anObject;                        return (this.m == other.m) && (this.k1 == other.k1)                && (this.k2 == other.k2) && (this.k3 == other.k3)                && a.equals(other.a) && b.equals(other.b);        }        public int hashCode()        {            return this.a.hashCode() ^ this.b.hashCode() ^ m ^ k1 ^ k2 ^ k3;        }        public int getM()        {            return m;        }        /**         * Return true if curve uses a Trinomial basis.         *          * @return true if curve Trinomial, false otherwise.         */        public boolean isTrinomial()        {            return k2 == 0 && k3 == 0;        }                public int getK1()        {            return k1;        }        public int getK2()        {            return k2;        }        public int getK3()        {            return k3;        }        }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -