📄 rfc1662.txt
字号:
Network Working Group W. Simpson, EditorRequest for Comments: 1662 DaydreamerSTD: 51 July 1994Obsoletes: 1549Category: Standards Track PPP in HDLC-like FramingStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Abstract The Point-to-Point Protocol (PPP) [1] provides a standard method for transporting multi-protocol datagrams over point-to-point links. This document describes the use of HDLC-like framing for PPP encapsulated packets.Table of Contents 1. Introduction .......................................... 1 1.1 Specification of Requirements ................... 2 1.2 Terminology ..................................... 2 2. Physical Layer Requirements ........................... 3 3. The Data Link Layer ................................... 4 3.1 Frame Format .................................... 5 3.2 Modification of the Basic Frame ................. 7 4. Octet-stuffed framing ................................. 8 4.1 Flag Sequence ................................... 8 4.2 Transparency .................................... 8 4.3 Invalid Frames .................................. 9 4.4 Time Fill ....................................... 9 4.4.1 Octet-synchronous ............................... 9 4.4.2 Asynchronous .................................... 9 4.5 Transmission Considerations ..................... 10 4.5.1 Octet-synchronous ............................... 10 4.5.2 Asynchronous .................................... 10Simpson [Page i]RFC 1662 HDLC-like Framing July 1994 5. Bit-stuffed framing ................................... 11 5.1 Flag Sequence ................................... 11 5.2 Transparency .................................... 11 5.3 Invalid Frames .................................. 11 5.4 Time Fill ....................................... 11 5.5 Transmission Considerations ..................... 12 6. Asynchronous to Synchronous Conversion ................ 13 7. Additional LCP Configuration Options .................. 14 7.1 Async-Control-Character-Map (ACCM) .............. 14 APPENDICES ................................................... 17 A. Recommended LCP Options ............................... 17 B. Automatic Recognition of PPP Frames ................... 17 C. Fast Frame Check Sequence (FCS) Implementation ........ 18 C.1 FCS table generator ............................. 18 C.2 16-bit FCS Computation Method ................... 19 C.3 32-bit FCS Computation Method ................... 21 SECURITY CONSIDERATIONS ...................................... 24 REFERENCES ................................................... 24 ACKNOWLEDGEMENTS ............................................. 25 CHAIR'S ADDRESS .............................................. 25 EDITOR'S ADDRESS ............................................. 251. Introduction This specification provides for framing over both bit-oriented and octet-oriented synchronous links, and asynchronous links with 8 bits of data and no parity. These links MUST be full-duplex, but MAY be either dedicated or circuit-switched. An escape mechanism is specified to allow control data such as XON/XOFF to be transmitted transparently over the link, and to remove spurious control data which may be injected into the link by intervening hardware and software. Some protocols expect error free transmission, and either provide error detection only on a conditional basis, or do not provide it at all. PPP uses the HDLC Frame Check Sequence for error detection. This is commonly available in hardware implementations, and a software implementation is provided.Simpson [Page 1]RFC 1662 HDLC-like Framing July 19941.1. Specification of Requirements In this document, several words are used to signify the requirements of the specification. These words are often capitalized. MUST This word, or the adjective "required", means that the definition is an absolute requirement of the specification. MUST NOT This phrase means that the definition is an absolute prohibition of the specification. SHOULD This word, or the adjective "recommended", means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications must be understood and carefully weighed before choosing a different course. MAY This word, or the adjective "optional", means that this item is one of an allowed set of alternatives. An implementation which does not include this option MUST be prepared to interoperate with another implementation which does include the option.1.2. Terminology This document frequently uses the following terms: datagram The unit of transmission in the network layer (such as IP). A datagram may be encapsulated in one or more packets passed to the data link layer. frame The unit of transmission at the data link layer. A frame may include a header and/or a trailer, along with some number of units of data. packet The basic unit of encapsulation, which is passed across the interface between the network layer and the data link layer. A packet is usually mapped to a frame; the exceptions are when data link layer fragmentation is being performed, or when multiple packets are incorporated into a single frame. peer The other end of the point-to-point link. silently discard The implementation discards the packet without further processing. The implementation SHOULD provide the capability of logging the error, including the contents of the silently discarded packet, and SHOULD record the event in a statistics counter.Simpson [Page 2]RFC 1662 HDLC-like Framing July 19942. Physical Layer Requirements PPP is capable of operating across most DTE/DCE interfaces (such as, EIA RS-232-E, EIA RS-422, and CCITT V.35). The only absolute requirement imposed by PPP is the provision of a full-duplex circuit, either dedicated or circuit-switched, which can operate in either an asynchronous (start/stop), bit-synchronous, or octet-synchronous mode, transparent to PPP Data Link Layer frames. Interface Format PPP presents an octet interface to the physical layer. There is no provision for sub-octets to be supplied or accepted. Transmission Rate PPP does not impose any restrictions regarding transmission rate, other than that of the particular DTE/DCE interface. Control Signals PPP does not require the use of control signals, such as Request To Send (RTS), Clear To Send (CTS), Data Carrier Detect (DCD), and Data Terminal Ready (DTR). When available, using such signals can allow greater functionality and performance. In particular, such signals SHOULD be used to signal the Up and Down events in the LCP Option Negotiation Automaton [1]. When such signals are not available, the implementation MUST signal the Up event to LCP upon initialization, and SHOULD NOT signal the Down event. Because signalling is not required, the physical layer MAY be decoupled from the data link layer, hiding the transient details of the physical transport. This has implications for mobility in cellular radio networks, and other rapidly switching links. When moving from cell to cell within the same zone, an implementation MAY choose to treat the entire zone as a single link, even though transmission is switched among several frequencies. The link is considered to be with the central control unit for the zone, rather than the individual cell transceivers. However, the link SHOULD re-establish its configuration whenever the link is switched to a different administration. Due to the bursty nature of data traffic, some implementations have choosen to disconnect the physical layer during periods ofSimpson [Page 3]RFC 1662 HDLC-like Framing July 1994 inactivity, and reconnect when traffic resumes, without informing the data link layer. Robust implementations should avoid using this trick over-zealously, since the price for decreased setup latency is decreased security. Implementations SHOULD signal the Down event whenever "significant time" has elapsed since the link was disconnected. The value for "significant time" is a matter of considerable debate, and is based on the tariffs, call setup times, and security concerns of the installation.3. The Data Link Layer PPP uses the principles described in ISO 3309-1979 HDLC frame structure, most recently the fourth edition 3309:1991 [2], which specifies modifications to allow HDLC use in asynchronous environments. The PPP control procedures use the Control field encodings described in ISO 4335-1979 HDLC elements of procedures, most recently the fourth edition 4335:1991 [4]. This should not be construed to indicate that every feature of the above recommendations are included in PPP. Each feature included is explicitly described in the following sections. To remain consistent with standard Internet practice, and avoid confusion for people used to reading RFCs, all binary numbers in the following descriptions are in Most Significant Bit to Least Significant Bit order, reading from left to right, unless otherwise indicated. Note that this is contrary to standard ISO and CCITT practice which orders bits as transmitted (network bit order). Keep this in mind when comparing this document with the international standards documents.Simpson [Page 4]RFC 1662 HDLC-like Framing July 19943.1. Frame Format A summary of the PPP HDLC-like frame structure is shown below. This figure does not include bits inserted for synchronization (such as start and stop bits for asynchronous links), nor any bits or octets inserted for transparency. The fields are transmitted from left to right. +----------+----------+----------+ | Flag | Address | Control | | 01111110 | 11111111 | 00000011 | +----------+----------+----------+ +----------+-------------+---------+ | Protocol | Information | Padding | | 8/16 bits| * | * | +----------+-------------+---------+ +----------+----------+----------------- | FCS | Flag | Inter-frame Fill |16/32 bits| 01111110 | or next Address +----------+----------+----------------- The Protocol, Information and Padding fields are described in the Point-to-Point Protocol Encapsulation [1]. Flag Sequence Each frame begins and ends with a Flag Sequence, which is the binary sequence 01111110 (hexadecimal 0x7e). All implementations continuously check for this flag, which is used for frame synchronization. Only one Flag Sequence is required between two frames. Two consecutive Flag Sequences constitute an empty frame, which is silently discarded, and not counted as a FCS error. Address Field The Address field is a single octet, which contains the binary sequence 11111111 (hexadecimal 0xff), the All-Stations address. Individual station addresses are not assigned. The All-Stations address MUST always be recognized and received. The use of other address lengths and values may be defined at a later time, or by prior agreement. Frames with unrecognized Addresses SHOULD be silently discarded.Simpson [Page 5]RFC 1662 HDLC-like Framing July 1994 Control Field The Control field is a single octet, which contains the binary sequence 00000011 (hexadecimal 0x03), the Unnumbered Information (UI) command with the Poll/Final (P/F) bit set to zero. The use of other Control field values may be defined at a later time, or by prior agreement. Frames with unrecognized Control field values SHOULD be silently discarded. Frame Check Sequence (FCS) Field The Frame Check Sequence field defaults to 16 bits (two octets). The FCS is transmitted least significant octet first, which contains the coefficient of the highest term. A 32-bit (four octet) FCS is also defined. Its use may be negotiated as described in "PPP LCP Extensions" [5].
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -