⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 g723_24.cpp

📁 很牛的GUI源码wxWidgets-2.8.0.zip 可在多种平台下运行.
💻 CPP
字号:
/* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use.  Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California  94043 *//* * g723_24.c * * Description: * * g723_24_encoder(), g723_24_decoder() * * These routines comprise an implementation of the CCITT G.723 24 Kbps * ADPCM coding algorithm.  Essentially, this implementation is identical to * the bit level description except for a few deviations which take advantage * of workstation attributes, such as hardware 2's complement arithmetic. * */#include "wx/wxprec.h"#include "wx/mmedia/internal/g72x.h"/* * Maps G.723_24 code word to reconstructed scale factor normalized log * magnitude values. */static short _dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048};/* Maps G.723_24 code word to log of scale factor multiplier. */static short _witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128};/* * Maps G.723_24 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */static short _fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};static short qtab_723_24[3] = {8, 218, 331};/* * g723_24_encoder() * * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code. * Returns -1 if invalid input coding value. */intg723_24_encoder(    int                sl,    int                in_coding,    struct g72x_state *state_ptr){    short        sei, sezi, se, sez;    /* ACCUM */    short        d;                     /* SUBTA */    short        y;                     /* MIX */    short        sr;                    /* ADDB */    short        dqsez;                 /* ADDC */    short        dq, i;    switch (in_coding) {    /* linearize input sample to 14-bit PCM */    case AUDIO_ENCODING_ALAW:        sl = alaw2linear(sl) >> 2;        break;    case AUDIO_ENCODING_ULAW:        sl = ulaw2linear(sl) >> 2;        break;    case AUDIO_ENCODING_LINEAR:        sl = ((short)sl) >> 2;        /* sl of 14-bit dynamic range */        break;    default:        return (-1);    }    sezi = predictor_zero(state_ptr);    sez = sezi >> 1;    sei = sezi + predictor_pole(state_ptr);    se = sei >> 1;            /* se = estimated signal */    d = sl - se;            /* d = estimation diff. */    /* quantize prediction difference d */    y = step_size(state_ptr);    /* quantizer step size */    i = quantize(d, y, qtab_723_24, 3);    /* i = ADPCM code */    dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */    sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */    dqsez = sr + sez - se;        /* pole prediction diff. */    update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);    return (i);}/* * g723_24_decoder() * * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */intg723_24_decoder(    int                i,    int                out_coding,    struct g72x_state *state_ptr){    short        sezi, sei, sez, se;    /* ACCUM */    short        y;                     /* MIX */    short        sr;                    /* ADDB */    short        dq;    short        dqsez;    i &= 0x07;            /* mask to get proper bits */    sezi = predictor_zero(state_ptr);    sez = sezi >> 1;    sei = sezi + predictor_pole(state_ptr);    se = sei >> 1;            /* se = estimated signal */    y = step_size(state_ptr);    /* adaptive quantizer step size */    dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */    sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */    dqsez = sr - se + sez;            /* pole prediction diff. */    update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);    switch (out_coding) {    case AUDIO_ENCODING_ALAW:        return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24));    case AUDIO_ENCODING_ULAW:        return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24));    case AUDIO_ENCODING_LINEAR:        return (sr << 2);    /* sr was of 14-bit dynamic range */    default:        return (-1);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -