📄 gmres.m
字号:
function [x, error_out, iter, flag] = gmres( A, x, b, M, restrt, max_it, tol )% -- Iterative template routine --% Univ. of Tennessee and Oak Ridge National Laboratory% October 1, 1993% Details of this algorithm are described in "Templates for the% Solution of Linear Systems: Building Blocks for Iterative% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).%% [x, error, iter, flag] = gmres( A, x, b, M, restrt, max_it, tol )%% gmres.m solves the linear system Ax=b% using the Generalized Minimal residual ( GMRESm ) method with restarts .%% input A REAL nonsymmetric positive definite matrix% x REAL initial guess vector% b REAL right hand side vector% M REAL preconditioner matrix% restrt INTEGER number of iterations between restarts% max_it INTEGER maximum number of iterations% tol REAL error tolerance%% output x REAL solution vector% error REAL error norm% iter INTEGER number of iterations performed% flag INTEGER: 0 = solution found to tolerance% 1 = no convergence given max_it % Chen minhua, 2006.02.18. error_out = []; iter = 0; % initialization flag = 0; bnrm2 = norm( b ); if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end r = M \ ( b-A*x ); error = norm( r ) / bnrm2; if ( error < tol ) return, end [n,n] = size(A); % initialize workspace m = restrt; V(1:n,1:m+1) = zeros(n,m+1); H(1:m+1,1:m) = zeros(m+1,m); cs(1:m) = zeros(m,1); sn(1:m) = zeros(m,1); e1 = zeros(n,1); e1(1) = 1.0; for iter = 1:max_it, % begin iteration r = M \ ( b-A*x ); V(:,1) = r / norm( r ); s = norm( r )*e1; for i = 1:m, % construct orthonormal w = M \ (A*V(:,i)); % basis using Gram-Schmidt for k = 1:i, H(k,i)= w'*V(:,k); w = w - H(k,i)*V(:,k); end H(i+1,i) = norm( w ); V(:,i+1) = w / H(i+1,i); for k = 1:i-1, % apply Givens rotation temp = cs(k)*H(k,i) + sn(k)*H(k+1,i); H(k+1,i) = -sn(k)*H(k,i) + cs(k)*H(k+1,i); H(k,i) = temp; end [cs(i),sn(i)] = rotmat( H(i,i), H(i+1,i) ); % form i-th rotation matrix temp = cs(i)*s(i); % approximate residual norm s(i+1) = -sn(i)*s(i); s(i) = temp; H(i,i) = cs(i)*H(i,i) + sn(i)*H(i+1,i); H(i+1,i) = 0.0; error = abs(s(i+1)) / bnrm2; error_out = [error_out, abs(s(i+1))]; if ( error <= tol ), % update approximation y = H(1:i,1:i) \ s(1:i); % and exit x = x + V(:,1:i)*y; break; end end if ( error <= tol ), break, end y = H(1:m,1:m) \ s(1:m); x = x + V(:,1:m)*y; % update approximation r = M \ ( b-A*x ) % compute residual s(i+1) = norm(r); error = s(i+1) / bnrm2; % check convergence if ( error <= tol ), break, end; end if ( error > tol ) flag = 1; end; % converged% END of gmres.m
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -