📄 cmath.cpp
字号:
for(int i=0;i<vec;i++)
{
re+=(x1.x[i]-x2.x[i])*(x1.x[i]-x2.x[i]);
}
re=sqrt(re);
return re;
}
void __fastcall CMath::zeroaverage(float * x, int n)
{
//TODO: Add your source code here
float *p;;
float sum=0;
for(p=x;p<(x+n);p++)
sum+=*p/100.0;
sum=(sum/float(n))*100.0;
for(p=x;p<(x+n);p++)
*p-=sum;
}
void __fastcall CMath::fft(int n, Complex * y, int flag)
{
//TODO: Add your source code here
short mp,arg,cntr,p1,p2,
i,j,a,b,k;
double sign,pr,pi,harm,t,*ca,*sa;
ca=new double[n];
sa=new double[n];
j=0;
if(flag!=0)
{
sign=1.0;
for(i=0;i<=n-1;++i)
{
y[i].real=y[i].real/n;
y[i].image=y[i].image/n;
}
}
else sign=-1.0;
for(i=0;i<=n-2;++i)
{
if(i<j)
{
t=y[i].real;
y[i].real=y[j].real;
y[j].real=t;
t=y[i].image;
y[i].image=y[j].image;
y[j].image=t;
}
k=n/2;
while(k<=j)
{
j-=k;
k/=2;
}
j+=k;
}
mp=0;
i=n;
while(i!=1)
{
mp+=1;
i/=2;
}
harm=double(2*PI/n);
for(i=0;i<=n-1;++i)
{
sa[i]=sign*sin(harm*i);
ca[i]=cos(harm*i);
}
a=2;b=1;
for(cntr=1;cntr<=mp;++cntr)
{
p1=n/a;
p2=0;
for(k=0;k<=b-1;++k)
{
i=k;
while(i<n)
{
arg=i+b;
if(k==0)
{
pr=y[arg].real;
pi=y[arg].image;
}
else
{
pr=y[arg].real*ca[p2]-y[arg].image*sa[p2];
pi=y[arg].real*sa[p2]+y[arg].image*ca[p2];
}
y[arg].real=y[i].real-pr;
y[arg].image=y[i].image-pi;
y[i].real+=pr;
y[i].image+=pi;
i+=a;
}
p2+=p1;
}
a*=2;
b*=2;
}
delete []ca;
delete []sa;
}
float __fastcall CMath::max_frequency(float * data_c, int lenth)
{
//TODO: Add your source code here
int i,j;
float *r;
r=new float[20];
for(i=0;i<20;i++)
r[i]=0.0;
float *c;
c=new float[20];
Complex *m_a;
m_a=new Complex[20];
for(i=0;i<20;i++)
{
c[i]=data_c[i];
}
zeroaverage(c,20);
for(i=0;i<20;i++){
m_a[i].real=c[i];
m_a[i].image=0.0;
}
fft(20,m_a,1);
for(i=0;i<20;i++)
c[i]=sqrt(SquareSum(m_a[i].real,m_a[i].image));
for(i=0;i<20;i++)
r[i]=r[i]+c[i];
float max=0.0;
for(i=0;i<20;i++)
{
if(r[i]>max) max=r[i];
}
return max;
/*double breadthmagnifytimes;//幅值放大倍数
breadthmagnifytimes=30.0;
short *t;
t=new short[20];
for(i=0;i<20;i++)
t[i]=short(breadthmagnifytimes*r[i]);//幅值放大100倍 */
}
float __fastcall CMath::SquareSum(float a, float b)
{
//TODO: Add your source code here
float fret;
fret=a*a+b*b;
return(fret);
}
/*矩阵奇异值分解所需子程序*/
void __fastcall CMath::ppp(float a[], float e[], float s[], float v[], int m, int n)
{
//TODO: Add your source code here
int i,j,p,q;
float d;
if (m>=n) i=n;
else i=m;
for (j=1; j<=i-1; j++)
{ a[(j-1)*n+j-1]=s[j-1];
a[(j-1)*n+j]=e[j-1];
}
a[(i-1)*n+i-1]=s[i-1];
if (m<n) a[(i-1)*n+i]=e[i-1];
for (i=1; i<=n-1; i++)
for (j=i+1; j<=n; j++)
{ p=(i-1)*n+j-1; q=(j-1)*n+i-1;
d=v[p]; v[p]=v[q]; v[q]=d;
}
}
/*矩阵奇异值分解所需子程序*/
void __fastcall CMath::sss(float fg[], float cs[])
{
//TODO: Add your source code here
float r,d;
if ((fabs(fg[0])+fabs(fg[1]))==0.0)
{ cs[0]=1.0; cs[1]=0.0; d=0.0;}
else
{ d=sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
if (fabs(fg[0])>fabs(fg[1]))
{ d=fabs(d);
if (fg[0]<0.0) d=-d;
}
if (fabs(fg[1])>=fabs(fg[0]))
{ d=fabs(d);
if (fg[1]<0.0) d=-d;
}
cs[0]=fg[0]/d; cs[1]=fg[1]/d;
}
r=1.0;
if (fabs(fg[0])>fabs(fg[1])) r=cs[1];
else
if (cs[0]!=0.0) r=1.0/cs[0];
fg[0]=d; fg[1]=r;
}
/*矩阵的奇异值分解程序
变量说明:a:实型二维数组,体积为m*n,存放m*n的实矩阵A;反回时其对角线给出奇异值
(以非递增次序排列),其余元素均为0。
m:矩阵A的行数。n:矩阵A的列数
u:双精度实型二维数组,体积为m*m。返回时存放左奇异向量
u:双精度实型二维数组,体积为n*n。返回时存放右奇异向量
eps:给定的精度要求
ka:整型变量。其值为max(m,n)+1*/
int __fastcall CMath::SVD(float a[], int m, int n, float u[], float v[], float eps, int ka)
{
//TODO: Add your source code here
int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
float *s,*e,*w;
s=new float[ka];
e=new float[ka];;
w=new float[ka];
it=60; k=n;
if (m-1<n) k=m-1;
l=m;
if (n-2<m) l=n-2;
if (l<0) l=0;
ll=k;
if (l>k) ll=l;
if (ll>=1)
{ for (kk=1; kk<=ll; kk++)
{ if (kk<=k)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];}
s[kk-1]=sqrt(d);
if (s[kk-1]!=0.0)
{ ix=(kk-1)*n+kk-1;
if (a[ix]!=0.0)
{ s[kk-1]=fabs(s[kk-1]);
if (a[ix]<0.0) s[kk-1]=-s[kk-1];
}
for (i=kk; i<=m; i++)
{ iy=(i-1)*n+kk-1;
a[iy]=a[iy]/s[kk-1];
}
a[ix]=1.0+a[ix];
}
s[kk-1]=-s[kk-1];
}
if (n>=kk+1)
{ for (j=kk+1; j<=n; j++)
{ if ((kk<=k)&&(s[kk-1]!=0.0))
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1;
iy=(i-1)*n+j-1;
d=d+a[ix]*a[iy];
}
d=-d/a[(kk-1)*n+kk-1];
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+j-1;
iy=(i-1)*n+kk-1;
a[ix]=a[ix]+d*a[iy];
}
}
e[j-1]=a[(kk-1)*n+j-1];
}
}
if (kk<=k)
{ for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1;
u[ix]=a[iy];
}
}
if (kk<=l)
{ d=0.0;
for (i=kk+1; i<=n; i++)
d=d+e[i-1]*e[i-1];
e[kk-1]=sqrt(d);
if (e[kk-1]!=0.0)
{ if (e[kk]!=0.0)
{ e[kk-1]=fabs(e[kk-1]);
if (e[kk]<0.0) e[kk-1]=-e[kk-1];
}
for (i=kk+1; i<=n; i++)
e[i-1]=e[i-1]/e[kk-1];
e[kk]=1.0+e[kk];
}
e[kk-1]=-e[kk-1];
if ((kk+1<=m)&&(e[kk-1]!=0.0))
{ for (i=kk+1; i<=m; i++) w[i-1]=0.0;
for (j=kk+1; j<=n; j++)
for (i=kk+1; i<=m; i++)
w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
for (j=kk+1; j<=n; j++)
for (i=kk+1; i<=m; i++)
{ ix=(i-1)*n+j-1;
a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
}
}
for (i=kk+1; i<=n; i++)
v[(i-1)*n+kk-1]=e[i-1];
}
}
}
mm=n;
if (m+1<n) mm=m+1;
if (k<n) s[k]=a[k*n+k];
if (m<mm) s[mm-1]=0.0;
if (l+1<mm) e[l]=a[l*n+mm-1];
e[mm-1]=0.0;
nn=m;
if (m>n) nn=n;
if (nn>=k+1)
{ for (j=k+1; j<=nn; j++)
{ for (i=1; i<=m; i++)
u[(i-1)*m+j-1]=0.0;
u[(j-1)*m+j-1]=1.0;
}
}
if (k>=1)
{ for (ll=1; ll<=k; ll++)
{ kk=k-ll+1; iz=(kk-1)*m+kk-1;
if (s[kk-1]!=0.0)
{ if (nn>=kk+1)
for (j=kk+1; j<=nn; j++)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1;
iy=(i-1)*m+j-1;
d=d+u[ix]*u[iy]/u[iz];
}
d=-d;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+j-1;
iy=(i-1)*m+kk-1;
u[ix]=u[ix]+d*u[iy];
}
}
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; u[ix]=-u[ix];}
u[iz]=1.0+u[iz];
if (kk-1>=1)
for (i=1; i<=kk-1; i++)
u[(i-1)*m+kk-1]=0.0;
}
else
{ for (i=1; i<=m; i++)
u[(i-1)*m+kk-1]=0.0;
u[(kk-1)*m+kk-1]=1.0;
}
}
}
for (ll=1; ll<=n; ll++)
{ kk=n-ll+1; iz=kk*n+kk-1;
if ((kk<=l)&&(e[kk-1]!=0.0))
{ for (j=kk+1; j<=n; j++)
{ d=0.0;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1;
d=d+v[ix]*v[iy]/v[iz];
}
d=-d;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1;
v[ix]=v[ix]+d*v[iy];
}
}
}
for (i=1; i<=n; i++)
v[(i-1)*n+kk-1]=0.0;
v[iz-n]=1.0;
}
for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
a[(i-1)*n+j-1]=0.0;
m1=mm; it=60;
while (1==1)
{ if (mm==0)
{ ppp(a,e,s,v,m,n);
delete[] s; delete[] e; delete[] w; return(1);
}
if (it==0)
{ ppp(a,e,s,v,m,n);
delete[] s; delete[] e; delete[] w; return(-1);
}
kk=mm-1;
while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
{ d=fabs(s[kk-1])+fabs(s[kk]);
dd=fabs(e[kk-1]);
if (dd>eps*d) kk=kk-1;
else e[kk-1]=0.0;
}
if (kk==mm-1)
{ kk=kk+1;
if (s[kk-1]<0.0)
{ s[kk-1]=-s[kk-1];
for (i=1; i<=n; i++)
{ ix=(i-1)*n+kk-1; v[ix]=-v[ix];}
}
while ((kk!=m1)&&(s[kk-1]<s[kk]))
{ d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d;
if (kk<n)
for (i=1; i<=n; i++)
{ ix=(i-1)*n+kk-1; iy=(i-1)*n+kk;
d=v[ix]; v[ix]=v[iy]; v[iy]=d;
}
if (kk<m)
for (i=1; i<=m; i++)
{ ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
d=u[ix]; u[ix]=u[iy]; u[iy]=d;
}
kk=kk+1;
}
it=60;
mm=mm-1;
}
else
{ ks=mm;
while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
{ d=0.0;
if (ks!=mm) d=d+fabs(e[ks-1]);
if (ks!=kk+1) d=d+fabs(e[ks-2]);
dd=fabs(s[ks-1]);
if (dd>eps*d) ks=ks-1;
else s[ks-1]=0.0;
}
if (ks==kk)
{ kk=kk+1;
d=fabs(s[mm-1]);
t=fabs(s[mm-2]);
if (t>d) d=t;
t=fabs(e[mm-2]);
if (t>d) d=t;
t=fabs(s[kk-1]);
if (t>d) d=t;
t=fabs(e[kk-1]);
if (t>d) d=t;
sm=s[mm-1]/d; sm1=s[mm-2]/d;
em1=e[mm-2]/d;
sk=s[kk-1]/d; ek=e[kk-1]/d;
b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0;
c=sm*em1; c=c*c; shh=0.0;
if ((b!=0.0)||(c!=0.0))
{ shh=sqrt(b*b+c);
if (b<0.0) shh=-shh;
shh=c/(b+shh);
}
fg[0]=(sk+sm)*(sk-sm)-shh;
fg[1]=sk*ek;
for (i=kk; i<=mm-1; i++)
{ sss(fg,cs);
if (i!=kk) e[i-2]=fg[0];
fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
fg[1]=cs[1]*s[i];
s[i]=cs[0]*s[i];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=n; j++)
{ ix=(j-1)*n+i-1;
iy=(j-1)*n+i;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
sss(fg,cs);
s[i-1]=fg[0];
fg[0]=cs[0]*e[i-1]+cs[1]*s[i];
s[i]=-cs[1]*e[i-1]+cs[0]*s[i];
fg[1]=cs[1]*e[i];
e[i]=cs[0]*e[i];
if (i<m)
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=m; j++)
{ ix=(j-1)*m+i-1;
iy=(j-1)*m+i;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
e[mm-2]=fg[0];
it=it-1;
}
else
{ if (ks==mm)
{ kk=kk+1;
fg[1]=e[mm-2]; e[mm-2]=0.0;
for (ll=kk; ll<=mm-1; ll++)
{ i=mm+kk-ll-1;
fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
if (i!=kk)
{ fg[1]=-cs[1]*e[i-2];
e[i-2]=cs[0]*e[i-2];
}
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=n; j++)
{ ix=(j-1)*n+i-1;
iy=(j-1)*n+mm-1;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
}
}
else
{ kk=ks+1;
fg[1]=e[kk-2];
e[kk-2]=0.0;
for (i=kk; i<=mm; i++)
{ fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
fg[1]=-cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=m; j++)
{ ix=(j-1)*m+i-1;
iy=(j-1)*m+kk-2;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
}
}
}
}
return(1);
}
/*实矩阵相乘
a:体积为m*n的矩阵A
b:体积为n*k的矩阵B
m:矩阵A的行数
n:矩阵A的列数,矩阵B的行数
k:矩阵B的列数
c:体积为m*k,返回乘积矩阵C=A*B的元素*/
void __fastcall CMath::brmul(float a[], float b[], int m, int n, int k, float c[])
{
//TODO: Add your source code here
int i,j,l,u;
for (i=0; i<=m-1; i++)
for (j=0; j<=k-1; j++)
{ u=i*k+j; c[u]=0.0;
for (l=0; l<=n-1; l++)
c[u]=c[u]+a[i*n+l]*b[l*k+j];
}
return;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -