⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 inflate.c

📁 Intel 5.2 版本的zlib 库实现
💻 C
📖 第 1 页 / 共 5 页
字号:
        printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits,
               state.distcode[low].val);
        if (++low == size) break;
        putchar(',');
    }
    puts("\n    };");
}
#endif /* MAKEFIXED */

/*
   Update the window with the last wsize (normally 32K) bytes written before
   returning.  If window does not exist yet, create it.  This is only called
   when a window is already in use, or when output has been written during this
   inflate call, but the end of the deflate stream has not been reached yet.
   It is also called to create a window for dictionary data when a dictionary
   is loaded.

   Providing output buffers larger than 32K to inflate() should provide a speed
   advantage, since only the last 32K of output is copied to the sliding window
   upon return from inflate(), and since all distances after the first 32K of
   output will fall in the output data, making match copies simpler and faster.
   The advantage may be dependent on the size of the processor's data caches.
 */
local int updatewindow(strm, out)
z_streamp strm;
unsigned out;
{
    struct inflate_state FAR *state;
    unsigned copy, dist;

    state = (struct inflate_state FAR *)strm->state;

    /* if it hasn't been done already, allocate space for the window */
    if (state->window == Z_NULL) {
        state->window = (unsigned char FAR *)
                        ZALLOC(strm, 1U << state->wbits,
                               sizeof(unsigned char));
        if (state->window == Z_NULL) return 1;
    }

    /* if window not in use yet, initialize */
    if (state->wsize == 0) {
        state->wsize = 1U << state->wbits;
        state->write = 0;
        state->whave = 0;
    }

    /* copy state->wsize or less output bytes into the circular window */
    copy = out - strm->avail_out;
    if (copy >= state->wsize) {
        zmemcpy(state->window, strm->next_out - state->wsize, state->wsize);
        state->write = 0;
        state->whave = state->wsize;
    }
    else {
        dist = state->wsize - state->write;
        if (dist > copy) dist = copy;
        zmemcpy(state->window + state->write, strm->next_out - copy, dist);
        copy -= dist;
        if (copy) {
            zmemcpy(state->window, strm->next_out - copy, copy);
            state->write = copy;
            state->whave = state->wsize;
        }
        else {
            state->write += dist;
            if (state->write == state->wsize) state->write = 0;
            if (state->whave < state->wsize) state->whave += dist;
        }
    }
    return 0;
}

/* Macros for inflate(): */

/* check function to use adler32() for zlib or crc32() for gzip */
#ifdef GUNZIP
#  define UPDATE(check, buf, len) \
    (state->headerFlags ? crc32(check, buf, len) : adler32(check, buf, len))
#else
#  define UPDATE(check, buf, len) adler32(check, buf, len)
#endif

/* check macros for header crc */
#ifdef GUNZIP
#  define CRC2(check, word) \
    do { \
        hbuf[0] = (unsigned char)(word); \
        hbuf[1] = (unsigned char)((word) >> 8); \
        check = crc32(check, hbuf, 2); \
    } while (0)

#  define CRC4(check, word) \
    do { \
        hbuf[0] = (unsigned char)(word); \
        hbuf[1] = (unsigned char)((word) >> 8); \
        hbuf[2] = (unsigned char)((word) >> 16); \
        hbuf[3] = (unsigned char)((word) >> 24); \
        check = crc32(check, hbuf, 4); \
    } while (0)
#endif

/* Load registers with state in inflate() for speed */
#define LOAD() \
    do { \
        put = strm->next_out; \
        left = strm->avail_out; \
        next = strm->next_in; \
        have = strm->avail_in; \
        hold = state->hold; \
        bits = state->bits; \
    } while (0)

/* Restore state from registers in inflate() */
#define RESTORE() \
    do { \
        strm->next_out = put; \
        strm->avail_out = left; \
        strm->next_in = next; \
        strm->avail_in = have; \
        state->hold = hold; \
        state->bits = bits; \
    } while (0)

/* Clear the input bit accumulator */
#define INITBITS() \
    do { \
        hold = 0; \
        bits = 0; \
    } while (0)

/* Get a byte of input into the bit accumulator, or return from inflate()
   if there is no input available. */
#define PULLBYTE() \
    do { \
        if (have == 0) goto inf_leave; \
        have--; \
        hold += (unsigned long)(*next++) << bits; \
        bits += 8; \
    } while (0)

/* Assure that there are at least n bits in the bit accumulator.  If there is
   not enough available input to do that, then return from inflate(). */
#define NEEDBITS(n) \
    do { \
        while (bits < (unsigned)(n)) \
            PULLBYTE(); \
    } while (0)

/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
    ((unsigned)hold & ((1U << (n)) - 1))

/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
    do { \
        hold >>= (n); \
        bits -= (unsigned)(n); \
    } while (0)

/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
    do { \
        hold >>= bits & 7; \
        bits -= bits & 7; \
    } while (0)

/* Reverse the bytes in a 32-bit value */
#define REVERSE(q) \
    ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
     (((q) & 0xff00) << 8) + (((q) & 0xff) << 24))

/*
   inflate() uses a state machine to process as much input data and generate as
   much output data as possible before returning.  The state machine is
   structured roughly as follows:

    for (;;) switch (state) {
    ...
    case STATEn:
        if (not enough input data or output space to make progress)
            return;
        ... make progress ...
        state = STATEm;
        break;
    ...
    }

   so when inflate() is called again, the same case is attempted again, and
   if the appropriate resources are provided, the machine proceeds to the
   next state.  The NEEDBITS() macro is usually the way the state evaluates
   whether it can proceed or should return.  NEEDBITS() does the return if
   the requested bits are not available.  The typical use of the BITS macros
   is:

        NEEDBITS(n);
        ... do something with BITS(n) ...
        DROPBITS(n);

   where NEEDBITS(n) either returns from inflate() if there isn't enough
   input left to load n bits into the accumulator, or it continues.  BITS(n)
   gives the low n bits in the accumulator.  When done, DROPBITS(n) drops
   the low n bits off the accumulator.  INITBITS() clears the accumulator
   and sets the number of available bits to zero.  BYTEBITS() discards just
   enough bits to put the accumulator on a byte boundary.  After BYTEBITS()
   and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.

   NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
   if there is no input available.  The decoding of variable length codes uses
   PULLBYTE() directly in order to pull just enough bytes to decode the next
   code, and no more.

   Some states loop until they get enough input, making sure that enough
   state information is maintained to continue the loop where it left off
   if NEEDBITS() returns in the loop.  For example, want, need, and keep
   would all have to actually be part of the saved state in case NEEDBITS()
   returns:

    case STATEw:
        while (want < need) {
            NEEDBITS(n);
            keep[want++] = BITS(n);
            DROPBITS(n);
        }
        state = STATEx;
    case STATEx:

   As shown above, if the next state is also the next case, then the break
   is omitted.

   A state may also return if there is not enough output space available to
   complete that state.  Those states are copying stored data, writing a
   literal byte, and copying a matching string.

   When returning, a "goto inf_leave" is used to update the total counters,
   update the check value, and determine whether any progress has been made
   during that inflate() call in order to return the proper return code.
   Progress is defined as a change in either strm->avail_in or strm->avail_out.
   When there is a window, goto inf_leave will update the window with the last
   output written.  If a goto inf_leave occurs in the middle of decompression
   and there is no window currently, goto inf_leave will create one and copy
   output to the window for the next call of inflate().

   In this implementation, the flush parameter of inflate() only affects the
   return code (per zlib.h).  inflate() always writes as much as possible to
   strm->next_out, given the space available and the provided input--the effect
   documented in zlib.h of Z_SYNC_FLUSH.  Furthermore, inflate() always defers
   the allocation of and copying into a sliding window until necessary, which
   provides the effect documented in zlib.h for Z_FINISH when the entire input
   stream available.  So the only thing the flush parameter actually does is:
   when flush is set to Z_FINISH, inflate() cannot return Z_OK.  Instead it
   will return Z_BUF_ERROR if it has not reached the end of the stream.
 */

#ifdef INFLATE_OMP
 #if defined (_OPENMP)
  # define SWAP_PAIRS(pPairConstEx, pPairConstExMT, pairsIndEx, pairsIndExMT, pairsLenConstEx, pairsLenConstExMT, state) \
     ippsDecodeLZ77GetPairs_8u(&pPairConstEx, &pairsIndEx, &pairsLenConstEx, state->ipp_state); \
     ippsDecodeLZ77GetPairs_8u(&pPairConstExMT, &pairsIndExMT, &pairsLenConstExMT, state->ipp_stateMT); \
     ippsDecodeLZ77SetPairs_8u(pPairConstExMT, pairsIndExMT, pairsLenConstExMT, state->ipp_state); \
     ippsDecodeLZ77SetPairs_8u(pPairConstEx, pairsIndEx, pairsLenConstEx, state->ipp_stateMT); \
   (state->firstSwapDone)++;
 #endif
#endif

#if defined (INFLATE_OMP) && defined (_OPENMP) /* parallel implementaion of inflate() function */

int ZEXPORT inflate(strm, flush)
z_streamp strm;
int flush;
{
  struct inflate_state FAR *state;

  int ret;
  unsigned int           in, out;           /* save starting available input and output */
  IppLZ77State_8u*       pLZ77State;
  IppLZ77State_8u*       pLZ77StateMT;

  IppLZ77InflateStatus   inflateStatus;
  IppStatus              retStatus; 
  IppLZ77Flush           ippflush;
  IppLZ77Pair*           pPairConst;
  IppLZ77Pair*           pPair;
  int                    pairsLenConst;
  int                    pairsInd;
  Ipp8u*                 pSrc;             
  int                    srcLen;
  Ipp8u*                 pDst;
  int                    dstLen;
  IppStatus              retStatusMT; 
  IppLZ77Pair*           pPairConstMT;
  IppLZ77Pair*           pPairMT;
  int                    pairsLenConstMT;
  int                    pairsIndMT;
  IppLZ77Pair*           pPairConstSW;
  int                    pairsLenConstSW;
  int                    pairsIndSW;
  IppLZ77Pair*           pPairConstSWMT;
  int                    pairsLenConstSWMT;
  int                    pairsIndSWMT;
  int                    srcLenMT;
  int                    dstLenMT;
  IppStatus              decodeHuffStatus; 
  IppStatus              decodeLZ77Status;
  IppLZ77HuffMode        huffMode;
  int                    i;
  int                    copy;
  unsigned int           len;

  in = strm->avail_in;
  out = strm->avail_out;

  state = (struct inflate_state FAR *) strm->state;
  pLZ77State = (IppLZ77State_8u*) state->ipp_state;
  pLZ77StateMT = (IppLZ77State_8u*) state->ipp_stateMT;

  ippflush = IppLZ77NoFlush;

 next_iteration:

  ippsDecodeLZ77GetStatus_8u(&inflateStatus, pLZ77State);
  ippsDecodeLZ77GetPairs_8u(&pPairConst, &pairsInd, &pairsLenConst, pLZ77State); 

  if(inflateStatus == IppLZ77InflateStatusInit)
  {
    /* processing GZIP or ZLIB header */ 
    for( ; ; )
    { 
      if(state->headerMode == infhead)
      {      
        if (state->wrap == 0) 
		{ 
           state->headerBits = 0;
           state->headerBuf = 0;
           state->headerMode = infmain;
		   break;               
        } /* if */

        while(state->headerBits < 16)
        {   
          if(strm->avail_in == 0) 
          {     
            ret = Z_OK;    
            goto inf_leave;
          } /* if */
          (strm->avail_in)--;  
          state->headerBuf += ((*(strm->next_in)) << state->headerBits);
          (strm->next_in)++;              
          state->headerBits += 8;  
        } /* while */ 

#ifdef GUNZIP
        if( state->wrap & 2 ) 
        { /* gzip header */
          if (state->headerBuf == 0x8b1f)
		  {
             state->check = crc32(0, Z_NULL, 0); 
             state->headerBuf = 0;
             state->headerBits = 0;
             state->headerMode = infflags;
		  }
		  else
		  {
		     ret = Z_DATA_ERROR;
             goto inf_leave;
		  } /* if else */
        } 
        if (!(state->wrap & 1) ||   /* check if zlib header allowed */
#else
        if( 
#endif
            (((state->headerBuf & 0xff) << 8) + ((state->headerBuf)>>8))%31 )
		{
          ret = Z_DATA_ERROR;
          goto inf_leave;
        }
        else
        {
          strm->adler = state->check = adler32(0, Z_NULL, 0); 
          state->headerMode = infmain;
          if( (state->headerBuf >> 4) & 0x200) state->headerMode = infdictid;
		  		  
		  state->headerBuf = 0;
          state->headerBits = 0;
        } /* if else */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -