⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gatbxa1.ps

📁 王小平《遗传算法——理论、应用与软件实现》随书光盘
💻 PS
📖 第 1 页 / 共 5 页
字号:
1.57 (fect of tending to inhibit the possibility of conver) 210.43 736.95 P1.57 (ging to a local) 458.64 736.95 P(optimum, rather than the global optimum.) 135.65 722.95 T1.87 (After recombination and mutation, the individual strings are then, if necessary) 135.65 696.95 P1.87 (,) 528.65 696.95 P4.09 (decoded, the objective function evaluated, a \336tness value assigned to each) 135.65 682.95 P-0.01 (individual and individuals selected for mating according to their \336tness, and so the) 135.65 668.95 P4.08 (process continues through subsequent generations. In this way) 135.65 654.95 P4.08 (, the average) 462.55 654.95 P3.36 (performance of individuals in a population is expected to increase, as good) 135.65 640.95 P0.1 (individuals are preserved and bred with one another and the less \336t individuals die) 135.65 626.95 P-0.26 (out. The GA is terminated when some criteria are satis\336ed, e.g. a certain number of) 135.65 612.95 P0.66 (generations, a mean deviation in the population, or when a particular point in the) 135.65 598.95 P(search space is encountered.) 135.65 584.95 T1 16 Q(GAs versus T) 135.65 556.29 T(raditional Methods) 226.86 556.29 T2 12 Q1.06 (From the above discussion, it can be seen that the GA dif) 135.65 528.95 P1.06 (fers substantially from) 421.6 528.95 P3.43 (more traditional search and optimization methods. The four most signi\336cant) 135.65 514.95 P(dif) 135.65 500.95 T(ferences are:) 148.76 500.95 T(\245) 157.25 474.95 T(GAs search a population of points in parallel, not a single point.) 171.65 474.95 T(\245) 157.25 454.95 T1.32 (GAs do not require derivative information or other auxiliary knowledge;) 171.65 454.95 P1.1 (only the objective function and corresponding \336tness levels in\337uence the) 171.65 440.95 P(directions of search.) 171.65 426.95 T(\245) 157.25 406.95 T(GAs use probabilistic transition rules, not deterministic ones.) 171.65 406.95 T(\245) 157.25 386.95 T-0.26 (GAs work on an encoding of the parameter set rather than the parameter set) 171.65 386.95 P(itself \050except in where real-valued individuals are used\051.) 171.65 372.95 T1.06 (It is important to note that the GA provides a number of potential solutions to a) 135.65 346.95 P0.5 (given problem and the choice of \336nal solution is left to the user) 135.65 332.95 P0.5 (. In cases where a) 444.75 332.95 P0.44 (particular problem does not have one individual solution, for example a family of) 135.65 318.95 P4.61 (Pareto-optimal solutions, as is the case in multiobjective optimization and) 135.65 304.95 P3.39 (scheduling problems, then the GA is potentially useful for identifying these) 135.65 290.95 P(alternative solutions simultaneously) 135.65 276.95 T(.) 307.44 276.95 TFMENDPAGE%%EndPage: "5" 6%%Page: "6" 6595.3 841.9 0 FMBEGINPAGE0 10 Q0 X0 K(Genetic Algorithm Toolbox User\325s Guide) 63.65 61.61 T(1-6) 518.33 61.29 T63.65 716.95 531.65 726.95 C63.65 725.95 531.65 725.95 2 L1 H2 Z0 X0 KN-8.35 24.95 603.65 816.95 C1 18 Q0 X0 K(Major Elements of the Genetic Algorithm) 63.65 732.95 T2 12 Q0.01 (The simple genetic algorithm \050SGA\051 is described by Goldber) 135.65 694.95 P0.01 (g [1] and is used here) 428.67 694.95 P0.09 (to illustrate the basic components of the GA. A pseudo-code outline of the SGA is) 135.65 680.95 P1.58 (shown in Fig. 1. The population at time) 135.65 666.95 P0 F1.58 (t) 340.87 666.95 P2 F1.58 ( is represented by the time-dependent) 344.21 666.95 P0.74 (variable) 135.65 652.95 P0 F0.74 (P) 178.02 652.95 P2 F0.74 (, with the initial population of random estimates being) 184.02 652.95 P0 F0.74 (P\0500\051) 453.87 652.95 P2 F0.74 (. Using this) 475.19 652.95 P0.28 (outline of a GA, the remainder of this Section describes the major elements of the) 135.65 638.95 P(GA.) 135.65 624.95 T1 16 Q(Population Repr) 135.65 336.01 T(esentation and Initialisation) 248.64 336.01 T2 12 Q0.3 (GAs operate on a number of potential solutions, called a population, consisting of) 135.65 308.67 P2.4 (some encoding of the parameter set simultaneously) 135.65 294.67 P2.4 (. T) 395.08 294.67 P2.4 (ypically) 409.97 294.67 P2.4 (, a population is) 447.83 294.67 P0.25 (composed of between 30 and 100 individuals, although, a variant called the micro) 135.65 280.67 P1.11 (GA uses very small populations, ~10 individuals, with a restrictive reproduction) 135.65 266.67 P(and replacement strategy in an attempt to reach real-time execution [2].) 135.65 252.67 T0.4 (The most commonly used representation of chromosomes in the GA is that of the) 135.65 226.67 P2.36 (single-level binary string. Here, each decision variable in the parameter set is) 135.65 212.67 P0.23 (encoded as a binary string and these are concatenated to form a chromosome. The) 135.65 198.67 P1.64 (use of Gray coding has been advocated as a method of overcoming the hidden) 135.65 184.67 P4.2 (representational bias in conventional binary representation as the Hamming) 135.65 170.67 P1.13 (distance between adjacent values is constant [3]. Empirical evidence of Caruana) 135.65 156.67 P1.94 (and Schaf) 135.65 142.67 P1.94 (fer [4] suggests that lar) 185 142.67 P1.94 (ge Hamming distances in the representational) 303.11 142.67 P5.36 (mapping between adjacent values, as is the case in the standard binary) 135.65 128.67 P3.42 (representation, can result in the search process being deceived or unable to) 135.65 114.67 P63.65 96.95 531.65 744.95 C133.38 360.67 531.65 620.95 C162.43 380.97 502.59 600.65 R7 X0 KV2 12 Q0 X(procedure GA) 198.43 592.65 T(begin) 198.43 577.65 T(t = 0;) 243.43 562.65 T(initialize P\050t\051;) 243.43 547.65 T(evaluate P\050t\051;) 243.43 532.65 T(while not finished do) 243.43 517.65 T(begin) 243.43 502.65 T(t = t + 1;) 315.43 487.65 T(select P\050t\051 from P\050t-1\051;) 315.43 472.65 T(reproduce pairs in P\050t\051;) 315.43 457.65 T(evaluate P\050t\051;) 315.43 442.65 T(end) 243.43 427.65 T(end.) 198.43 412.65 T5 F(Figure 1: A Simple Genetic Algorithm) 234.43 386.65 T146.89 370.34 518.14 611.28 R0.5 H2 ZN63.65 96.95 531.65 744.95 C-8.35 24.95 603.65 816.95 CFMENDPAGE%%EndPage: "6" 7%%Page: "7" 7595.3 841.9 0 FMBEGINPAGE0 10 Q0 X0 K(Genetic Algorithm Toolbox User\325s Guide) 63.65 61.61 T(1-7) 518.33 61.29 T2 12 Q0.64 (ef) 135.65 736.95 P0.64 (\336ciently locate the global minimum. A further approach of Schmitendor) 144.75 736.95 P0.64 (gf) 496.04 736.95 P0 F0.64 (et-al) 509.66 736.95 P2 F5.3 ([5], is the use of logarithmic scaling in the conversion of binary-coded) 135.65 722.95 P3.46 (chromosomes to their real phenotypic values. Although the precision of the) 135.65 708.95 P1.48 (parameter values is possibly less consistent over the desired range, in problems) 135.65 694.95 P0.3 (where the spread of feasible parameters is unknown, a lar) 135.65 680.95 P0.3 (ger search space may be) 413.9 680.95 P0.51 (covered with the same number of bits than a linear mapping scheme allowing the) 135.65 666.95 P-0.2 (computational burden of exploring unknown search spaces to be reduced to a more) 135.65 652.95 P(manageable level.) 135.65 638.95 T0.33 (Whilst binary-coded GAs are most commonly used, there is an increasing interest) 135.65 612.95 P0.52 (in alternative encoding strategies, such as integer and real-valued representations.) 135.65 598.95 P1.37 (For some problem domains, it is ar) 135.65 584.95 P1.37 (gued that the binary representation is in fact) 311.22 584.95 P1.28 (deceptive in that it obscures the nature of the search [6]. In the subset selection) 135.65 570.95 P0.8 (problem [7], for example, the use of an integer representation and look-up tables) 135.65 556.95 P5.49 (provides a convenient and natural way of expressing the mapping from) 135.65 542.95 P(representation to problem domain.) 135.65 528.95 T0.06 (The use of real-valued genes in GAs is claimed by W) 135.65 502.95 P0.06 (right [8] to of) 392.27 502.95 P0.06 (fer a number of) 457.2 502.95 P1.02 (advantages in numerical function optimization over binary encodings. Ef) 135.65 488.95 P1.02 (\336ciency) 493.68 488.95 P0.45 (of the GA is increased as there is no need to convert chromosomes to phenotypes) 135.65 474.95 P-0.02 (before each function evaluation; less memory is required as ef) 135.65 460.95 P-0.02 (\336cient \337oating-point) 433.38 460.95 P-0.03 (internal computer representations can be used directly; there is no loss in precision) 135.65 446.95 P1.89 (by discretisation to binary or other values; and there is greater freedom to use) 135.65 432.95 P0.23 (dif) 135.65 418.95 P0.23 (ferent genetic operators. The use of real-valued encodings is described in detail) 148.76 418.95 P0.08 (by Michalewicz [9] and in the literature on Evolution Strategies \050see, for example,) 135.65 404.95 P([10]\051.) 135.65 390.95 T1.85 (Having decided on the representation, the \336rst step in the SGA is to create an) 135.65 364.95 P0.93 (initial population. This is usually achieved by generating the required number of) 135.65 350.95 P0.95 (individuals using a random number generator that uniformly distributes numbers) 135.65 336.95 P1.57 (in the desired range. For example, with a binary population of) 135.65 322.95 P0 F1.57 (N) 453 322.95 P0 10 Q1.3 (ind) 461 319.95 P2 12 Q1.57 ( individuals) 473.77 322.95 P1.57 (whose chromosomes are) 135.65 308.95 P0 F1.57 (L) 261.27 308.95 P0 10 Q1.31 (ind) 267.94 305.95 P2 12 Q1.57 ( bits long,) 280.71 308.95 P0 F1.57 (N) 336.08 308.95 P0 10 Q1.31 (ind) 344.08 305.95 P4 12 Q1.57 (\264) 361.42 308.95 P0 F1.57 (L) 372.58 308.95 P0 10 Q1.31 (ind) 379.24 305.95 P2 12 Q1.57 ( random numbers uniformly) 392.02 308.95 P(distributed from the set {0, 1} would be produced.) 135.65 294.95 T3.16 (A variation is the) 135.65 268.95 P0 F3.16 (extended random initialisation) 234.23 268.95 P2 F3.16 ( procedure of Bramlette [6]) 387.8 268.95 P1.02 (whereby a number of random initialisations are tried for each individual and the) 135.65 254.95 P0.74 (one with the best performance is chosen for the initial population. Other users of) 135.65 240.95 P-0.01 (GAs have seeded the initial population with some individuals that are known to be) 135.65 226.95 P2.31 (in the vicinity of the global minimum \050see, for example, [1) 135.65 212.95 P2.31 (1] and [12]\051. This) 440.12 212.95 P3.22 (approach is, of course, only applicable if the nature of the problem is well) 135.65 198.95 P-0.16 (understood beforehand or if the GA is used in conjunction with a knowledge based) 135.65 184.95 P(system.) 135.65 170.95 T5.61 (The GA T) 135.65 144.95 P5.61 (oolbox supports binary) 195.31 144.95 P5.61 (, integer and \337oating-point chromosome) 316.35 144.95 P3.8 (representations. Binary and integer populations may be initialised using the) 135.65 130.95 P1.9 (T) 135.65 116.95 P1.9 (oolbox function to create binary populations,) 142.14 116.95 P3 F4.55 (crtbp) 372.38 116.95 P2 F1.9 (. An additional function,) 408.36 116.95 P3 F3.25 (crtbase) 135.65 102.95 P2 F1.35 (, is provided that builds a vector describing the integer representation) 186.02 102.95 PFMENDPAGE%%EndPage: "7" 8%%Page: "8" 8595.3 841.9 0 FMBEGINPAGE0 10 Q0 X0 K(Genetic Algorithm Toolbox User\325s Guide) 63.65 61.61 T(1-8) 518.33 61.29 T2 12 Q3.99 (used. Real-valued populations may be initialised with the function) 135.65 736.95 P3 F9.57 (crtrp) 492.67 736.95 P2 F3.99 (.) 528.65 736.95 P2.54 (Conversion between binary strings and real values is provided by the routine) 135.65 722.95 P3 F(bs2rv) 135.65 708.95 T2 F( that supports the use of Gray codes and logarithmic scaling.) 171.63 708.95 T1 16 Q(The Objective and Fitness Functions) 135.65 680.29 T2 12 Q2.47 (The objective function is used to provide a measure of how individuals have) 135.65 652.95 P-0.11 (performed in the problem domain. In the case of a minimization problem, the most) 135.65 638.95 P1.87 (\336t individuals will have the lowest numerical value of the associated objective) 135.65 624.95 P0.17 (function. This raw measure of \336tness is usually only used as an intermediate stage) 135.65 610.95 P0.36 (in determining the relative performance of individuals in a GA. Another function,) 135.65 596.95 P0.05 (the) 135.65 582.95 P0 F0.05 (\336tness function) 153.35 582.95 P2 F0.05 (, is normally used to transform the objective function value into) 225.7 582.95 P(a measure of relative \336tness [13], thus:) 135.65 568.95 T-0.29 (where) 135.65 514.76 P0 F-0.29 (f) 167.66 514.76 P2 F-0.29 ( is the objective function,) 170.99 514.76 P0 F-0.29 (g) 294.13 514.76 P2 F-0.29 ( transforms the value of the objective function to) 300.13 514.76 P2.1 (a non-negative number and) 135.65 500.76 P0 F2.1 (F) 277.95 500.76 P2 F2.1 ( is the resulting relative \336tness. This mapping is) 285.28 500.76 P1.97 (always necessary when the objective function is to be minimized as the lower) 135.65 486.76 P3.03 (objective function values correspond to \336tter individuals. In many cases, the) 135.65 472.76 P-0.29 (\336tness function value corresponds to the number of of) 135.65 458.76 P-0.29 (fspring that an individual can) 392.24 458.76 P0.33 (expect to produce in the next generation. A commonly used transformation is that) 135.65 444.76 P1.03 (of proportional \336tness assignment \050see, for example, [1]\051. The individual \336tness,) 135.65 430.76 P0 F1.4 (F\050x) 135.65 416.76 P0 10 Q1.17 (i) 152.29 413.76 P0 12 Q1.4 (\051) 155.07 416.76 P2 F1.4 (, of each individual is computed as the individual\325) 159.07 416.76 P1.4 (s raw performance,) 409.79 416.76 P0 F1.4 (f\050x) 509.22 416.76 P0 10 Q1.17 (i) 521.88 413.76 P0 12 Q1.4 (\051) 524.66 416.76 P2 F1.4 (,) 528.65 416.76 P(relative to the whole population, i.e.,) 135.65 402.76 T(,) 380.93 365.33 T1.36 (where) 135.65 304.51 P0 F1.36 (N) 169.3 304.51 P0 10 Q1.13 (ind) 177.3 301.51 P2 12 Q1.36 ( is the population size and) 190.08 304.51 P0 F1.36 (x) 326.15 304.51 P0 10 Q1.13 (i) 331.47 301.51 P2 12 Q1.36 ( is the phenotypic value of individual) 334.25 304.51 P0 F1.36 (i) 525.32 304.51 P2 F1.36 (.) 528.65 304.51 P1.87 (Whilst this \336tness assignment ensures that each individual has a probability of) 135.65 290.51 P3.54 (reproducing according to its relative \336tness, it fails to account for negative) 135.65 276.51 P(objective function values.) 135.65 262.51 T0.15 (A linear transformation which of) 135.65 236.51 P0.15 (fsets the objective function [1] is often used prior) 293.92 236.51 P(to \336tness assignment, such that,) 135.65 222.51 T0.2 (where) 135.65 168.32 P0 F0.2 (a) 168.15 168.32 P2 F0.2 ( is a positive scaling factor if the optimization is maximizing and negative) 174.14 168.32 P-0.1 (if we are minimizing. The of) 135.65 154.32 P-0.1 (fset) 272.83 154.32 P0 F-0.1 (b) 293.04 154.32 P2 F-0.1 ( is used to ensure that the resulting \336tness values) 299.04 154.32 P(are non-negative.) 135.65 140.32 T288.09 536.76 379.21 550.95 C0 12 Q0 X0 K(F) 289.09 541.75 T(x) 304.22 541.75 T4 F(\050) 299.12 541.75 T(\051) 310.16 541.75 T0 F(g) 334.73 541.75 T(f) 348.54 541.75 T(x) 359.68 541.75 T4 F(\050) 354.58 541.75 T(\051) 365.61 541.75 T(\050) 343.44 541.75 T(\051) 372.21 541.75 T(=) 322.15 541.75 T-8.35 24.95 603.65 816.95 C283.37 326.51 380.93 384.76 C0 12 Q0 X0 K(F) 284.37 365.33 T(x) 299.5 365.33 T0 9 Q(i) 305.29 361.55 T4 12 Q(\050) 294.4 365.33 T(\051) 308.4 365.33 T0 F(f) 343.44 375.55 T(x) 354.58 375.55 T0 9 Q(i) 360.36 371.77 T4 12 Q(\050) 349.48 375.55 T(\051) 363.47 375.55 T0 F(f) 352.9 343.76 T(x) 364.04 343.76 T0 9 Q(i) 369.83 339.98 T4 12 Q(\050) 358.94 343.76 T(\051) 372.93 343.76 T0 9 Q(i) 333.98 329.46 T2 F(1) 347.41 329.46 T4 F(=) 339.47 329.46 T0 F(N) 335.47 360.27 T0 6 Q(i) 341.82 357.82 T(n) 343.94 357.82 T(d) 347.4 357.82 T4 18 Q(\345) 336.52 340.55 T4 12 Q(=) 320.39 365.33 T333.98 367.92 378.68 367.92 2 L0.33 H0 ZN-8.35 24.95 603.65 816.95 C285.65 190.32 381.65 204.51 C0 12 Q0 X0 K(F) 286.65 195.31 T(x) 301.79 195.31 T4 F(\050) 296.68 195.31 T(\051) 307.72 195.31 T0 F(a) 332.3 195.31 T(f) 339 195.31 T(x) 350.14 195.31 T4 F(\050) 345.04 195.31 T(\051) 356.07 195.31 T0 F(b) 374.65 195.31 T4 F(+) 365.07 195.31 T(=) 319.71 195.31 T-8.35 24.95 603.65 816.95 CFMENDPAGE%%EndPage: "8" 9%%Page: "9" 9595.3 841.9 0 FMBEGINPAGE0 10 Q0 X0 K(Genetic Algorithm Toolbox User\325s Guide) 63.65 61.61 T(1-9) 518.33 61.29 T2 12 Q0.91 (The linear scaling and of) 135.65 736.95 P0.91 (fsetting outlined above is, however) 258.3 736.95 P0.91 (, susceptible to rapid) 429.66 736.95 P6.1 (conver) 135.65 722.95 P6.1 (gence. The) 168.07 722.95 P0 F6.1 (selection) 235.88 722.95 P2 F6.1 ( algorithm \050see below\051 selects individuals for) 278.52 722.95 P3.81 (reproduction on the basis of their relative \336tness. Using linear scaling, the) 135.65 708.95 P2.09 (expected number of of) 135.65 694.95 P

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -