📄 fuzzykmeanclusteringengine.java
字号:
/**
* Copyright (C) 2006, Laboratorio di Valutazione delle Prestazioni - Politecnico di Milano
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
package jmt.engine.jwat.workloadAnalysis.clustering.fuzzyKMean;
import jmt.engine.jwat.MatrixOsservazioni;
import jmt.engine.jwat.Observation;
import jmt.engine.jwat.TimeConsumingWorker;
import jmt.engine.jwat.VariableNumber;
public class FuzzyKMeanClusteringEngine {
class SFKMClust{
String centri; // contiene i centri dei cluster
String log; // informazioni generali
/** DA SISTEMARE **/ String[] clus_log; /*= new String[37]; // log dei valori del Cluster = new String[MAXCLU]*/
}
public String m_strFKMLog;
public SFKMClust m_arrClust[];
public double clus_entropy[]; // entropie finali dei Cluster
public int m_nMaxClust;
private VariableNumber[] listOfVars; //Solo quelle selezionate
private Observation[] obsSel;
private int[] varS;
private double[][] U = null;//0
private double[][] newU = null;//1
private double[][] centers = null;//2
private double[][] mrow = null;//3
private double[][] singularity = null;//4
private double[][] distance = null;//5
private int m_nNumNorm;
private int m_nFLev;
private int m_nIter;
private FuzzyKMean fuzzy = null;
private TimeConsumingWorker worker;
public FuzzyKMeanClusteringEngine(FuzzyKMean f,TimeConsumingWorker worker){
this.worker=worker;
fuzzy = f;
}
public void PrepFClustering(MatrixOsservazioni m,int indVarSel[],int nMaxClust,int nFLev,int nIter){
m_nNumNorm = indVarSel.length;
m_nMaxClust = nMaxClust; // Num.massimo di clusters da considerare
m_nFLev = nFLev; // Livello di fuzzyness
m_nIter = nIter; // Valore di tollerabilit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -