📄 kmean.java
字号:
package jmt.engine.jwat.workloadAnalysis.clustering.kMean;
import java.util.Vector;
import jmt.engine.jwat.MatrixOsservazioni;
import jmt.engine.jwat.workloadAnalysis.clustering.Clustering;
import jmt.engine.jwat.workloadAnalysis.clustering.ClusteringInfos;
import jmt.engine.jwat.workloadAnalysis.clustering.kMean.KMeanClusteringEngine.TempClusterStatistics;
import jmt.gui.jwat.JWATConstants;
public class KMean implements Clustering,JWATConstants{
private ClusteringInfosKMean[] results;
private short[][] clustAssign = null;
//private Vector clusterAssignemnt=null; //Vector di Vector
private int[] varSel;
public KMean(int numClust,int[] varSel){
this.varSel=varSel;
results=new ClusteringInfosKMean[numClust];
clustAssign=new short[numClust][];
//clusterAssignemnt= new Vector();
}
public String getName() {
return "k-Means";
}
public int getNumCluster() {
return results.length;
}
public ClusteringInfos getClusteringInfos(int numCluster) {
return results[numCluster];
}
public void calcClusteringInfo(int numCluster,TempClusterStatistics[][] sum,short[] cAss,MatrixOsservazioni m)
{
//clusterAssignemnt.add(clusAssign);
clustAssign[numCluster] = cAss;
results[numCluster]=new ClusteringInfosKMean(numCluster,m.getNumVariables());
if(numCluster != 0)
results[numCluster].Output(varSel,sum,cAss,m,results[numCluster-1].passw);
else
results[numCluster].Output(varSel,sum,cAss,m,0);
}
public void setRatio(int endClust)
{
if ( endClust > 2) {
//Mostra riassunto sui cluster
/* Calcola un indice che mostri la validit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -