📄 solversingleclosedexactdyn.java
字号:
/**
* Copyright (C) 2006, Laboratorio di Valutazione delle Prestazioni - Politecnico di Milano
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* SolverSingleClosedExactDyn.java
*
* Created on 21 novembre 2002, 17.47
*/
package jmt.analytical;
import java.io.PrintWriter;
/**
* Solves a single class closed model, using the normalization constant algorithm.
* <br>
* NOT USED
* @author Federico Granata
*/
public class SolverSingleClosedExactDyn extends jmt.analytical.SolverSingleClosedExact {
private double[] scalPrec;
private double[] scalCorr;
public SolverSingleClosedExactDyn(int customers, int stations) {
super(customers, stations);
}
/** Solves the system
*/
public void solve() {
scalPrec = new double[customers + 1];
scalCorr = new double[customers + 1];
PrintWriter pw = new PrintWriter(System.out, true);
double Y = 0;
double[] FM = new double[customers + 1];
double temp;
double sum = 0;
double MAX = 1.0E250;
double MIN = Double.parseDouble("1.0e-250");
long start; // used in time elapsed calculating
long end; // used in time elapsed calculating
int center = 0; // center index
int cust = 0; // customer index
int auxCust = 0; // an other customer index
double beta = 1;
start = System.currentTimeMillis();
pw.println("solving");
/* Start calculation of Norm Const*/
/* first service center */
G[0] = 1;
scalPrec[0] = 1;
if (type[0] == Solver.LI) {
Y = visits[0] * servTime[0][0];
for (int n = 1; n < G.length; n++) {
G[n] = Y * G[n - 1];
if (G[n] >= MAX) {
beta = Math.pow(MAX, -1.0 / n);
scalPrec[n] = scalPrec[n - 1] * beta;
G[n] /= MAX;
Y *= beta;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else if (G[n] <= MIN) {
beta = Math.pow(MIN, -1.0 / n);
scalPrec[n] = scalPrec[n - 1] * beta;
G[n] /= MIN;
Y *= beta;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else
scalPrec[n] = scalPrec[n - 1];
}
//pw.println("G of center 0 : " + G[customers]);
} else if (type[0] == Solver.LD) {
for (int n = 1; n < G.length; n++) {
G[n] = visits[0] * G[n - 1] * servTime[0][n];
if (G[n] >= MAX) {
beta = Math.pow(MAX, -1.0 / n);
scalPrec[n] *= beta;
G[n] /= MAX;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else if (G[n] <= MIN) {
beta = Math.pow(MIN, -1.0 / n);
scalPrec[n] *= beta;
G[n] /= MIN;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else
scalPrec[n] = scalPrec[n - 1];
}
//pw.println("G of center 0 : " + G[customers]);
}
/* all others service center */
for (center = 1; center < stations; center++) {
if (type[center] == Solver.LI) {
Y = visits[center] * servTime[center][0];
for (cust = 1; cust < G.length; cust++) {
if (scalPrec[cust] == scalCorr[cust - 1])
G[cust] = G[cust] + Y * G[cust - 1];
else
G[cust] = G[cust] * Math.pow(scalCorr[cust - 1] / scalPrec[cust], cust) + Y * G[cust - 1];
if (G[cust] >= MAX) {
beta = Math.pow(MAX, -1.0 / cust);
scalCorr[cust] = scalCorr[cust - 1] * beta;
G[cust] /= MAX;
Y *= beta;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else if (G[cust] <= MIN) {
beta = Math.pow(MIN, -1.0 / cust);
scalCorr[cust] = scalCorr[cust - 1] * beta;
G[cust] /= MIN;
Y *= beta;
for (int m = 0; m < stations; m++)
visits[m] *= beta;
} else
scalCorr[cust] = scalCorr[cust - 1];
}
//pw.println(" G of center " + center + " : " + G[customers]);
}
if (type[center] == Solver.LD) {
FM[0] = 1;
Y = visits[center];
for (cust = 1; cust < G.length; cust++)
FM[cust] = FM[cust - 1] * Y * servTime[center][cust];
for (cust = (G.length - 1); cust > 0; cust--) {
sum = 0;
for (auxCust = 0; auxCust <= cust; auxCust++) {
if ((center == stations - 1) && (cust == G.length - 1)) {
/* this is used in calculation of queueLen for last
* station */
temp = FM[auxCust] * G[cust - auxCust];
sum += temp;
queueLen[stations - 1] += temp * auxCust;
} else {
sum += FM[auxCust] * G[cust - auxCust];
}
}
G[cust] = sum;
}
//pw.println("G of center " + center + " : " + G[customers]);
}
/* this is used in calculation of queueLen for last station */
if (center == stations - 2) {
System.arraycopy(G, 0, auxFun, 0, (customers + 1));
}
System.arraycopy(scalCorr, 0, scalPrec, 0, customers + 1);
}
pw.println("End solving");
end = System.currentTimeMillis();
pw.println("Time elapsed in milliseconds : " + (end - start));
return;
}
/** Calculates the indexes of interest for the system.<br>
* For a description of the algorithm see:<br>
* <em>
* S.C. Bruell, G. Balbo,<br>
* "Computational Algorithms for closed Queueing Networks"<br>
* 1980, Elsevier North Holland
*/
public void indexes() {
//TODO: da implementare??
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -