📄 select.c
字号:
**** Examples:**** CREATE TABLE one(a INTEGER, b TEXT);** CREATE TABLE two(c VARCHAR(5), d FLOAT);**** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;**** The primary sort key will use SQLITE_SO_NUM because the "d" in** the second SELECT is numeric. The 1st column of the first SELECT** is text but that does not matter because a numeric always overrides** a text.**** The secondary key will use the SQLITE_SO_TEXT sort order because** both the (second) "b" in the first SELECT and the "c" in the second** SELECT have a datatype of text.*/ static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){ int i; ExprList *pEList; if( pOrderBy==0 ) return; if( p==0 ){ for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT; } return; } multiSelectSortOrder(p->pPrior, pOrderBy); pEList = p->pEList; for(i=0; i<pOrderBy->nExpr; i++){ Expr *pE = pOrderBy->a[i].pExpr; if( pE->dataType==SQLITE_SO_NUM ) continue; assert( pE->iColumn>=0 ); if( pEList->nExpr>pE->iColumn ){ pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr); } }}/*** Compute the iLimit and iOffset fields of the SELECT based on the** nLimit and nOffset fields. nLimit and nOffset hold the integers** that appear in the original SQL statement after the LIMIT and OFFSET** keywords. Or that hold -1 and 0 if those keywords are omitted.** iLimit and iOffset are the integer memory register numbers for** counters used to compute the limit and offset. If there is no** limit and/or offset, then iLimit and iOffset are negative.**** This routine changes the values if iLimit and iOffset only if** a limit or offset is defined by nLimit and nOffset. iLimit and** iOffset should have been preset to appropriate default values** (usually but not always -1) prior to calling this routine.** Only if nLimit>=0 or nOffset>0 do the limit registers get** redefined. The UNION ALL operator uses this property to force** the reuse of the same limit and offset registers across multiple** SELECT statements.*/static void computeLimitRegisters(Parse *pParse, Select *p){ /* ** If the comparison is p->nLimit>0 then "LIMIT 0" shows ** all rows. It is the same as no limit. If the comparision is ** p->nLimit>=0 then "LIMIT 0" show no rows at all. ** "LIMIT -1" always shows all rows. There is some ** contraversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ if( p->nLimit>=0 ){ int iMem = pParse->nMem++; Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return; sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0); sqliteVdbeAddOp(v, OP_MemStore, iMem, 1); p->iLimit = iMem; } if( p->nOffset>0 ){ int iMem = pParse->nMem++; Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return; sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0); sqliteVdbeAddOp(v, OP_MemStore, iMem, 1); p->iOffset = iMem; }}/*** This routine is called to process a query that is really the union** or intersection of two or more separate queries.**** "p" points to the right-most of the two queries. the query on the** left is p->pPrior. The left query could also be a compound query** in which case this routine will be called recursively. **** The results of the total query are to be written into a destination** of type eDest with parameter iParm.**** Example 1: Consider a three-way compound SQL statement.**** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3**** This statement is parsed up as follows:**** SELECT c FROM t3** |** `-----> SELECT b FROM t2** |** `------> SELECT a FROM t1**** The arrows in the diagram above represent the Select.pPrior pointer.** So if this routine is called with p equal to the t3 query, then** pPrior will be the t2 query. p->op will be TK_UNION in this case.**** Notice that because of the way SQLite parses compound SELECTs, the** individual selects always group from left to right.*/static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){ int rc; /* Success code from a subroutine */ Select *pPrior; /* Another SELECT immediately to our left */ Vdbe *v; /* Generate code to this VDBE */ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only ** the last SELECT in the series may have an ORDER BY or LIMIT. */ if( p==0 || p->pPrior==0 ) return 1; pPrior = p->pPrior; if( pPrior->pOrderBy ){ sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before", selectOpName(p->op)); return 1; } if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){ sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before", selectOpName(p->op)); return 1; } /* Make sure we have a valid query engine. If not, create a new one. */ v = sqliteGetVdbe(pParse); if( v==0 ) return 1; /* Create the destination temporary table if necessary */ if( eDest==SRT_TempTable ){ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0); eDest = SRT_Table; } /* Generate code for the left and right SELECT statements. */ switch( p->op ){ case TK_ALL: { if( p->pOrderBy==0 ){ pPrior->nLimit = p->nLimit; pPrior->nOffset = p->nOffset; rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0); if( rc ) return rc; p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; p->nLimit = -1; p->nOffset = 0; rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0); p->pPrior = pPrior; if( rc ) return rc; break; } /* For UNION ALL ... ORDER BY fall through to the next case */ } case TK_EXCEPT: case TK_UNION: { int unionTab; /* Cursor number of the temporary table holding result */ int op; /* One of the SRT_ operations to apply to self */ int priorOp; /* The SRT_ operation to apply to prior selects */ int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */ ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){ /* We can reuse a temporary table generated by a SELECT to our ** right. */ unionTab = iParm; }else{ /* We will need to create our own temporary table to hold the ** intermediate results. */ unionTab = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){ return 1; } if( p->op!=TK_ALL ){ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1); sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1); }else{ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0); } } /* Code the SELECT statements to our left */ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0); if( rc ) return rc; /* Code the current SELECT statement */ switch( p->op ){ case TK_EXCEPT: op = SRT_Except; break; case TK_UNION: op = SRT_Union; break; case TK_ALL: op = SRT_Table; break; } p->pPrior = 0; pOrderBy = p->pOrderBy; p->pOrderBy = 0; nLimit = p->nLimit; p->nLimit = -1; nOffset = p->nOffset; p->nOffset = 0; rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0); p->pPrior = pPrior; p->pOrderBy = pOrderBy; p->nLimit = nLimit; p->nOffset = nOffset; if( rc ) return rc; /* Convert the data in the temporary table into whatever form ** it is that we currently need. */ if( eDest!=priorOp || unionTab!=iParm ){ int iCont, iBreak, iStart; assert( p->pEList ); if( eDest==SRT_Callback ){ generateColumnNames(pParse, 0, p->pEList); generateColumnTypes(pParse, p->pSrc, p->pEList); } iBreak = sqliteVdbeMakeLabel(v); iCont = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak); computeLimitRegisters(pParse, p); iStart = sqliteVdbeCurrentAddr(v); multiSelectSortOrder(p, p->pOrderBy); rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, p->pOrderBy, -1, eDest, iParm, iCont, iBreak); if( rc ) return 1; sqliteVdbeResolveLabel(v, iCont); sqliteVdbeAddOp(v, OP_Next, unionTab, iStart); sqliteVdbeResolveLabel(v, iBreak); sqliteVdbeAddOp(v, OP_Close, unionTab, 0); if( p->pOrderBy ){ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm); } } break; } case TK_INTERSECT: { int tab1, tab2; int iCont, iBreak, iStart; int nLimit, nOffset; /* INTERSECT is different from the others since it requires ** two temporary tables. Hence it has its own case. Begin ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){ return 1; } sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1); sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1); /* Code the SELECTs to our left into temporary table "tab1". */ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0); if( rc ) return rc; /* Code the current SELECT into temporary table "tab2" */ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1); sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1); p->pPrior = 0; nLimit = p->nLimit; p->nLimit = -1; nOffset = p->nOffset; p->nOffset = 0; rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0); p->pPrior = pPrior; p->nLimit = nLimit; p->nOffset = nOffset; if( rc ) return rc; /* Generate code to take the intersection of the two temporary ** tables. */ assert( p->pEList ); if( eDest==SRT_Callback ){ generateColumnNames(pParse, 0, p->pEList); generateColumnTypes(pParse, p->pSrc, p->pEList); } iBreak = sqliteVdbeMakeLabel(v); iCont = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak); computeLimitRegisters(pParse, p); iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0); sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont); multiSelectSortOrder(p, p->pOrderBy); rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, p->pOrderBy, -1, eDest, iParm, iCont, iBreak); if( rc ) return 1; sqliteVdbeResolveLabel(v, iCont); sqliteVdbeAddOp(v, OP_Next, tab1, iStart); sqliteVdbeResolveLabel(v, iBreak); sqliteVdbeAddOp(v, OP_Close, tab2, 0); sqliteVdbeAddOp(v, OP_Close, tab1, 0); if( p->pOrderBy ){ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm); } break; } } assert( p->pEList && pPrior->pEList ); if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ sqliteErrorMsg(pParse, "SELECTs to the left and right of %s" " do not have the same number of result columns", selectOpName(p->op)); return 1; } return 0;}/*** Scan through the expression pExpr. Replace every reference to** a column in table number iTable with a copy of the iColumn-th** entry in pEList. (But leave references to the ROWID column ** unchanged.)**** This routine is part of the flattening procedure. A subquery** whose result set is defined by pEList appears as entry in the** FROM clause of a SELECT such that the VDBE cursor assigned to that** FORM clause entry is iTable. This routine make the necessary ** changes to pExpr so that it refers directly to the source table** of the subquery rather the result set of the subquery.*/static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ if( pExpr==0 ) return; if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); pNew = pEList->a[pExpr->iColumn].pExpr; assert( pNew!=0 ); pExpr->op = pNew->op; pExpr->dataType = pNew->dataType; assert( pExpr->pLeft==0 ); pExpr->pLeft = sqliteExprDup(pNew->pLeft); assert( pExpr->pRight==0 ); pExpr->pRight = sqliteExprDup(pNew->pRight); assert( pExpr->pList==0 ); pExpr->pList = sqliteExprListDup(pNew->pList); pExpr->iTable = pNew->iTable; pExpr->iColumn = pNew->iColumn; pExpr->iAgg = pNew->iAgg; sqliteTokenCopy(&pExpr->token, &pNew->token); sqliteTokenCopy(&pExpr->span, &pNew->span); } }else{ substExpr(pExpr->pLeft, iTable, pEList); substExpr(pExpr->pRight, iTable, pEList); substExprList(pExpr->pList, iTable, pEList); }}static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ int i; if( pList==0 ) return; for(i=0; i<pList->nExpr; i++){ substExpr(pList->a[i].pExpr, iTable, pEList); }}/*** This routine attempts to flatten subqueries in order to speed** execution. It returns 1 if it makes changes and 0 if no flattening** occurs.**** To understand the concept of flattening, consider the following** query:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -