📄 grad_ccv.m
字号:
function [df, dg] = grad_ccv(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)
%GRAD_CCV Evaluates gradients of objective function & constraints for OPF.
% [df, dg] = grad_ccv(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)
% MATPOWER Version 2.0
% by Ray Zimmerman, PSERC Cornell 12/12/97
% Copyright (c) 1996, 1997 by Power System Engineering Research Center (PSERC)
% See http://www.pserc.cornell.edu/ for more info.
%%----- initialize -----
%% define named indices into data, branch matrices
[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, ...
GEN_STATUS, PMAX, PMIN, MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = idx_gen;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, ...
RATE_C, TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST] = idx_brch;
[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, N, COST] = idx_cost;
%% options
alg = mpopt(11);
%% constant
j = sqrt(-1);
%% generator info
on = find(gen(:, GEN_STATUS)); %% which generators are on?
gbus = gen(on, GEN_BUS); %% what buses are they at?
%% sizes of things
nb = size(bus, 1);
nl = size(branch, 1);
npv = length(pv);
npq = length(pq);
ng = npv + 1; %% number of generators that are turned on
%% check for costs for Qg
[pcost, qcost] = pqcost(gencost, size(gen, 1), on);
if isempty(qcost) %% set number of cost variables
ncv = ng; %% only Cp
else
ncv = 2 * ng; %% Cp and Cq
end
%% set up indexing for x
j1 = 1; j2 = npv; %% j1:j2 - V angle of pv buses
j3 = j2 + 1; j4 = j2 + npq; %% j3:j4 - V angle of pq buses
j5 = j4 + 1; j6 = j4 + nb; %% j5:j6 - V mag of all buses
j7 = j6 + 1; j8 = j6 + ng; %% j7:j8 - P of generators
j9 = j8 + 1; j10 = j8 + ng; %% j9:j10 - Q of generators
j11 = j10 + 1; j12 = j10 + npv + 1; %% j11:j12 - Cp, cost of Pg
%% grab Pg & Qg and their costs
Pg = x(j7:j8); %% active generation in p.u.
Qg = x(j9:j10); %% reactive generation in p.u.
Cp = x(j11:j12); %% active costs in $/hr
if ncv > ng %% no free VARs
j13 = j12 + 1; j14 = j12 + npv + 1; %% j13:j14 - Cq, cost of Qg
Cq = x(j13:j14); %% reactive costs in $/hr
end
%%----- evaluate partials of objective function -----
%% compute values of objective function partials
df = [ zeros(j10, 1); %% partial w.r.t. Va, Vm, Pg, Qg
ones(ncv, 1) ]; %% partial w.r.t. Cp (and Cq)
%%----- evaluate partials of constraints -----
if nargout > 1
%% reconstruct V
Va = zeros(nb, 1);
Va([ref; pv; pq]) = [angle(V(ref)); x(j1:j2); x(j3:j4)];
Vm = x(j5:j6);
V = Vm .* exp(j * Va);
%% compute partials of injected bus powers
[dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V); %% w.r.t. V
dSbus_dPg = sparse(gbus, 1:ng, -1, nb, ng); %% w.r.t. Pg
dSbus_dQg = sparse(gbus, 1:ng, -j, nb, ng); %% w.r.t. Qg
%% compute partials of line flows w.r.t. V
[dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St] = dSbr_dV(branch, Yf, Yt, V);
%% line limits are w.r.t apparent power, so compute partials of apparent power
[dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm] = ...
dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St);
%% cost constraints w.r.t everything ( d(costfcn @ Pg - Cp) , etc.)
dQcc_dQg = zeros(0, ng);
dQcc_dCq = [];
nsegs = pcost(:, N) - 1; %% number of cost constraints for each gen
nPcc = sum(nsegs); %% total number of cost constraints
dPcc_dPg = sparse([], [], [], nPcc, ng, nPcc); %% nPcc x ng
dPcc_dCp = sparse([], [], [], nPcc, ng, nPcc); %% nPcc x ng
for i = 1:ng
xx = pcost(i, COST:2:( COST + 2*(nsegs(i)) ))';
yy = pcost(i, (COST+1):2:( COST + 2*(nsegs(i)) + 1))';
i1 = 1:nsegs(i);
i2 = 2:(nsegs(i) + 1);
m = (yy(i2) - yy(i1)) ./ (xx(i2) - xx(i1));
ii = sum(nsegs(1:(i-1))) + [1:nsegs(i)];
dPcc_dPg(ii, i) = m * baseMVA;
dPcc_dCp(ii, i) = -1 * ones(nsegs(i), 1);
end
nQcc = 0;
if ncv > ng %% no free VARs
nsegs = qcost(:, N) - 1; %% number of cost constraints for each gen
nQcc = sum(nsegs); %% total number of cost constraints
dQcc_dQg = sparse([], [], [], nQcc, ng, nQcc); %% nQcc x ng
dQcc_dCq = sparse([], [], [], nQcc, ng, nQcc); %% nQcc x ng
for i = 1:ng
xx = qcost(i, COST:2:( COST + 2*(nsegs(i)) ))';
yy = qcost(i, (COST+1):2:( COST + 2*(nsegs(i)) + 1))';
i1 = 1:nsegs(i);
i2 = 2:(nsegs(i) + 1);
m = (yy(i2) - yy(i1)) ./ (xx(i2) - xx(i1));
ii = sum(nsegs(1:(i-1))) + [1:nsegs(i)];
dQcc_dQg(ii, i) = m * baseMVA;
dQcc_dCq(ii, i) = -1 * ones(nsegs(i), 1);
end
end
%% [ dcc_dV dcc_dPg dcc_dQg dcc_dCp dcc_dCq ]
dPcc = [sparse(nPcc,j6), dPcc_dPg, sparse(nPcc,ng), dPcc_dCp, sparse(nPcc,ncv-ng)];
dQcc = [sparse(nQcc,j8), dQcc_dQg, sparse(nQcc,ng), dQcc_dCq];
%% evaluate partials of constraints
dg = [
%% equality constraints
real(dSbus_dVa(:,[pv;pq])), real(dSbus_dVm), ...
real(dSbus_dPg), real(dSbus_dQg), sparse(nb,ncv); %% P mismatch
imag(dSbus_dVa(:,[pv;pq])), imag(dSbus_dVm), ...
imag(dSbus_dPg), imag(dSbus_dQg), sparse(nb,ncv); %% Q mismatch
%% inequality constraints (variable limits, voltage & real generation)
sparse(nb,j4), -speye(nb,nb), sparse(nb,2*ng+ncv); %% Vmin for var V
sparse(nb,j4), speye(nb,nb), sparse(nb,2*ng+ncv); %% Vmax for var V
sparse(ng,j6), -speye(ng,ng), sparse(ng,ng+ncv); %% Pmin for generators
sparse(ng,j6), speye(ng,ng), sparse(ng,ng+ncv); %% Pmax for generators
sparse(ng,j8), -speye(ng,ng), sparse(ng,ncv); %% Qmin for generators
sparse(ng,j8), speye(ng,ng), sparse(ng,ncv); %% Qmax for generators
%% inequality constraints (reactive generation & line flow limits)
dAf_dVa(:,[pv;pq]), dAf_dVm, sparse(nl,2*ng+ncv); %% |Sf| limit
dAt_dVa(:,[pv;pq]), dAt_dVm, sparse(nl,2*ng+ncv); %% |St| limit
%% inequality constraints on generator cost
dPcc;
dQcc;
]';
%% make full so optimization toolbox doesn't go wacky
dg = full(dg);
end
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -