📄 fun_std.m
字号:
function [f, g] = fun_std(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)
%FUN_STD Evaluates objective function & constraints for OPF.
% [f, g] = fun_std(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)
% MATPOWER Version 2.0
% by Ray Zimmerman, PSERC Cornell 12/12/97
% Copyright (c) 1996, 1997 by Power System Engineering Research Center (PSERC)
% See http://www.pserc.cornell.edu/ for more info.
%%----- initialize -----
%% define named indices into gen, branch matrices
[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, ...
GEN_STATUS, PMAX, PMIN, MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = idx_gen;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, ...
RATE_C, TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST] = idx_brch;
[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, N, COST] = idx_cost;
%% constant
j = sqrt(-1);
%% sizes of things
nb = size(bus, 1);
nl = size(branch, 1);
npv = length(pv);
npq = length(pq);
ng = npv + 1; %% number of generators that are turned on
%% set up indexing for x
j1 = 1; j2 = npv; %% j1:j2 - V angle of pv buses
j3 = j2 + 1; j4 = j2 + npq; %% j3:j4 - V angle of pq buses
j5 = j4 + 1; j6 = j4 + nb; %% j5:j6 - V mag of all buses
j7 = j6 + 1; j8 = j6 + ng; %% j7:j8 - P of generators
j9 = j8 + 1; j10 = j8 + ng; %% j9:j10 - Q of generators
%% grab Pg & Qg
Pg = x(j7:j8); %% active generation in p.u.
Qg = x(j9:j10); %% reactive generation in p.u.
%%----- evaluate objective function -----
%% generator info
on = find(gen(:, GEN_STATUS)); %% which generators are on?
gbus = gen(on, GEN_BUS); %% what buses are they at?
%% put Pg & Qg back in gen
gen(on, PG) = Pg * baseMVA; %% active generation in MW
gen(on, QG) = Qg * baseMVA; %% reactive generation in MVAR
%% compute objective value
[pcost, qcost] = pqcost(gencost, size(gen, 1), on);
f = sum( [totcost(pcost, gen(on, PG)); ... %% cost of Pg
totcost(qcost, gen(on, QG)) ] ); %% cost of Qg, empty if no qcost
%%----- evaluate constraints -----
if nargout > 1
%% reconstruct V
Va = zeros(nb, 1);
Va([ref; pv; pq]) = [angle(V(ref)); x(j1:j2); x(j3:j4)];
Vm = x(j5:j6);
V = Vm .* exp(j * Va);
%% rebuild Sbus
Sbus = makeSbus(baseMVA, bus, gen); %% net injected power in p.u.
%% evaluate power flow equations
mis = V .* conj(Ybus * V) - Sbus;
%% compute branch power flows
Sf = V(branch(:, F_BUS)) .* conj(Yf * V); %% complex power injected at "from" bus (p.u.)
St = V(branch(:, T_BUS)) .* conj(Yt * V); %% complex power injected at "to" bus (p.u.)
%% compute constraint function values
g = [
%% equality constraints
real(mis); %% active power mismatch for all buses
imag(mis); %% reactive power mismatch for all buses
%% inequality constraints (variable limits, voltage & generation)
bus(:, VMIN) - x(j5:j6); %% lower voltage limit for var V
x(j5:j6) - bus(:, VMAX); %% upper voltage limit for var V
gen(on, PMIN) / baseMVA - x(j7:j8); %% lower generator P limit
x(j7:j8) - gen(on, PMAX) / baseMVA; %% upper generator P limit
gen(on, QMIN) / baseMVA - x(j9:j10); %% lower generator Q limit
x(j9:j10) - gen(on, QMAX) / baseMVA; %% upper generator Q limit
%% inequality constraints (line flow limits)
abs(Sf) - branch(:, RATE_A) / baseMVA; %% branch apparent power limits (from bus)
abs(St) - branch(:, RATE_A) / baseMVA; %% branch apparent power limits (to bus)
];
end
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -