⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 autopid_in4.html

📁 这是一个PID自动调节的程序
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<html><head><title>Synthesis Methods :: Introduction to PID Autotuning (AutotunerPID Toolkit)</title>
<!-- $Revision: 1.0 $  $Date: 2004/02/27 12:00:00 $ -->

<!-- DOCNAME: AutotunerPID Toolkit -->
<!-- CHUNKNAME: Synthesis Methods -->
<!-- CHAPNAME: Introduction to PID Autotuning -->
<!-- HEADSTUFF -->
<link href="docstyle1.css" rel="stylesheet" type="text/css">
</head>
<body bgcolor=#ffffff>
<!-- NAVBARTOP -->
<table border=0 width="100%" cellpadding=0 cellspacing=0><tr>
<td valign=baseline bgcolor="#ffe4b0"><b>AutotunerPID Toolkit</b></td>
<td valign=baseline bgcolor="#ffe4b0" align=right><a href="autopid_in3.html"><img src="b_prev.gif" alt="Previous page" border=0></a>&nbsp;&nbsp;&nbsp;<a href="autopid_sim.html"><img src="b_next.gif" alt="Next Page" border=0></a></td>
</tr>
</table>


<a name="process_identification"></a><!-- H1 -->
<p><font size=+2 color="#990000"><b>Synthesis methods</b></font><br>
<p>Once that a model (or some characteristic) of the plant have been identified,
  the second step is to tune the parameters of the PID regulator in order to
  achieve the best performances. In the following a brief overview of the
  synthesis methods implemented in the Toolkit is given.</p>
<p><a href="autopid_in4.html#t1">Ziegler &amp; Nichols with Step Identification [ZN(OL)]</a></p>
<p><a href="autopid_in4.html#t2">Kappa-Tau [KT]</a></p>
<p><a href="autopid_in4.html#t3">Internal Model Control [IMC]</a></p>
<p><a href="autopid_in4.html#t4">Ziegler &amp; Nichols with Relay Identification [ZN(CL)]</a></p>

<a name="znol_method"></a><!-- H2 --><a name="t1"></a>
<p><font size=+1 color="#990000"><b>Ziegler &amp; Nichols with Step Identification [ZN(OL)]</b></font><br>
<p> The first Ziegler and Nichols method tunes the parameter of the PID according to the following table,
	on the basis of the parameters identified for a FOPDT model</p>
<table width="400" border="1" align="center">
  <tr bgcolor="#CCCCCC">
    <th width="100" scope="col">&nbsp;</th>
    <th width="100" scope="col">K</th>
    <th width="100" scope="col">Ti</th>
    <th width="100" scope="col">Td</th>
  </tr>
  <tr>
    <th width="100" bgcolor="#CCCCCC" scope="row">P</th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">T/mL</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0</font></td>
  </tr>
  <tr>
    <th width="100" bgcolor="#CCCCCC" scope="row">PI</th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0.9T/mL</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">3L</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0</font></td>
  </tr>
  <tr>
    <th width="100" bgcolor="#CCCCCC" scope="row">PID</th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">1.2T/mL</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">2L</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0.5L</font></td>
  </tr>
</table>

<p>In the original version of method, the tuning formulas are given with respect
  to some characteristic of the process identified in terms of the 
  points where  the tangent to the step response in the point of
  maximum slope intersect the step response. However here the modified version
  has been used since it is more robust with respect to noise.</p>
	
<br>
<a name="kt_method"></a><!-- H2 --><a name="t2"></a>
<p><font size=+1 color="#990000"><b>Kappa-Tau [KT]</b></font><br>
<p>The Kappa-Tau  method computes the parameters of the 2-d.o.f. ISA PID
  control law apart from <font face="Courier New, Courier, mono">N</font> and
  in the output derivation case (i.e. <font face="Courier New, Courier, mono">c=0</font>).
  It requires to identify a FOPDT model if the process is not integrating, or
  a FOPDT one plus a factor <font face="Courier New, Courier, mono">1/s</font> if
  it is (not yet considered in the Toolkit).</p>
<p>The information used is then given by the model parameters <font face="Courier New, Courier, mono">m</font>,
  <font face="Courier New, Courier, mono">T</font> and <font face="Courier New, Courier, mono">L</font>,
	and by the request of a PI or PID regulator. A further specification is the required magnitude margin <font face="Courier New, Courier, mono">M<sub>s</sub></font>,
 	defined as</p>
<img src="images/ktFormula.gif">
<p>for which the two values of 1.4 (conservative tuning) or 2.0 (more aggressive tuning) are advised.
   Defining the <em>process normalized gain</em> <font face="Courier New, Courier, mono">alpha</font> and <em>normalized
   delay</em>
 	<font face="Courier New, Courier, mono">tau</font> as</p>
	<img src="images/ktFormula1.gif">
<p>the PI(D) regulator parameters are computed as</p>
<img src="images/ktFormula2.gif">
<p> The coefficients <font face="Courier New, Courier, mono">A<sub>i</sub></font>,
	<font face="Courier New, Courier, mono">B<sub>i</sub></font>, <font face="Courier New, Courier, mono">C<sub>i</sub></font>,
	<font face="Courier New, Courier, mono">D<sub>i</sub></font> come from the following
	table. These coefficients were derived by applying dominant pole design to many
	different processes and then interpolating the results to obtain compact tuning
	relationships. Thus, this is a model following method with the peculiarity
	of using interpolation. One important remark is that the normalized delay, sometimes
	called the &quot;controllability index&quot;, can be taken as a measure of
	how difficult to control a process is.</p>
<table width="534" border="1" align="center">
  <tr bgcolor="#CCCCCC">
    <th width="100" bgcolor="#CCCCCC" scope="row">Structure</th>
    <th width="100" bgcolor="#FFFFFF" scope="col">PI</th>
    <th width="100" bgcolor="#FFFFFF" scope="col">PI</th>
    <th width="100" bgcolor="#FFFFFF" scope="col">PID</th>
    <th width="100" bgcolor="#FFFFFF" scope="col">PID</th>
  </tr>
  <tr>
    <th width="100" bgcolor="#CCCCCC" scope="row">M<sub>s</sub></th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">1.4</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">2.0</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">1.4</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">2.0</font></td>
  </tr>
  <tr>
    <th width="100" bgcolor="#CCCCCC" scope="row">A<sub>0</sub></th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0.29</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">0.78</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">3.8</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">8.4</font></td>
  </tr>
  <tr>
    <th bgcolor="#CCCCCC" scope="row">A<sub>1</sub></th>
    <td width="100" align="center"><font face="Courier New, Courier, mono">-2.7</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">-4.1</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">-8.4</font></td>
    <td width="100" align="center"><font face="Courier New, Courier, mono">-9.6</font></td>
  </tr>
  <tr>
    <th bgcolor="#CCCCCC" scope="row">A<sub>2</sub></th>
    <td align="center"><font face="Courier New, Courier, mono">3.7</font></td>
    <td align="center"><font face="Courier New, Courier, mono">5.7</font></td>
    <td align="center"><font face="Courier New, Courier, mono">7.3</font></td>
    <td align="center"><font face="Courier New, Courier, mono">9.8</font></td>
  </tr>
  <tr>
    <th bgcolor="#CCCCCC" scope="row">B<sub>0</sub></th>
    <td align="center"><font face="Courier New, Courier, mono">8.9</font></td>
    <td align="center"><font face="Courier New, Courier, mono">8.9</font></td>
    <td align="center"><font face="Courier New, Courier, mono">5.2</font></td>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -