⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tpaps.m

📁 演示matlab曲线拟和与插直的基本方法
💻 M
字号:
function [st,p] = tpaps(x,y,p)
%TPAPS Thin-plate smoothing spline.
%
%   F = TPAPS(X,Y)  is the stform of a thin-plate smoothing spline  f  for
%   the given data sites X(:,j) and corresponding data values Y(:,j).
%   The data values may be scalars, vectors, matrices, or even ND-arrays.
%   The X(:,j) must be distinct points in the plane, and there must be exactly
%   as many data values as there are data sites.
%   The thin-plate smoothing spline  f  is the unique minimizer of the
%   weighted sum
%
%                     P*E(f) + (1-P)*R(f) ,
%
%   with E(f) the error measure
%
%       E(f) :=  sum_j { | Y(:,j) - f(X(:,j)) |^2 : j=1,...,n }
%
%   and R(f) the roughness measure
%
%       R(f) := integral  (D_1 D_1 f)^2 + 2(D_1 D_2 f)^2 + (D_2 D_2 f)^2.
%
%   Here, the integral is taken over the entire 2-space, and
%   D_i denotes differentiation with respect to the i-th argument, hence
%   the integral involves the second derivatives of  f .
%   The smoothing parameter P is chosen in an ad hoc fashion
%   in dependence on the sites X.
%
%   TPAPS(X,Y,P) provides the smoothing parameter P, a number expected to
%   be between  0  and  1 .  As P varies from 0 to 1, the smoothing spline
%   changes, from the least-squares approximation to the data by a linear
%   polynomial when P is 0, to the thin-plate spline interpolant to the data
%   when P is 1.
%
%   [F,P] = TPAPS(...) also returns the smoothing parameter used.
%
%   Warning: The determination of the smoothing spline involves the solution
%   of a linear system with as many unknowns as there are data points.
%   Since the matrix of this linear system is full, the solving can take a long
%   time even if, as is the case here, an iterative scheme is used when there
%   are more than 728 data points. The convergence speed of that iteration is
%   strongly influenced by P, and is slower the larger P is. So, for large
%   problems, use interpolation (P equal to 1) only if you can afford the time.
%
%   Examples:
%
%      rand('seed',23); nxy = 31;
%      xy = 2*(rand(2,nxy)-.5); vals = sum(xy.^2);
%      noisyvals = vals + (rand(size(vals))-.5)/5;
%      st = tpaps(xy,noisyvals); fnplt(st), hold on
%      avals = fnval(st,xy);
%      plot3(xy(1,:),xy(2,:),vals,'wo','markerfacecolor','k')
%      quiver3(xy(1,:),xy(2,:),avals,zeros(1,nxy),zeros(1,nxy), ...
%               noisyvals-avals,'r'), hold off
%   generates the value of a very smooth function at 31 random sites,
%   adds some noise to it, then constructs the smoothing spline to these
%   noisy data, plots the smoothing spline, the exact values (as black
%   balls) the smoothing is trying to recover, and the arrow leading from
%   the smoothed values to the noisy values.
%
%      n = 64; t = linspace(0,2*pi,n+1); t(end) = [];
%      values = [cos(t); sin(t)];
%      centers = values./repmat(max(abs(values)),2,1);
%      st = tpaps(centers, values, 1);
%      fnplt(st), axis equal
%   constructs a map from the plane to the plane that carries the unit square,
%   {x in R^2: |x(j)|<=1, j=1:2}, pretty much onto the unit disk
%   {x in R^2: norm(x)<=1}, as shown by the picture generated.
%
%   See also CSAPS, SPAPS.

%   Copyright 1987-2003 C. de Boor and The MathWorks, Inc.
%   $Revision: 1.5 $  $Date: 2003/04/25 21:12:44 $

[m,nx] = size(x);

if m~=2
   if nx==2, addmess = 'Perhaps you meant to supply the transpose of X?';
   else addmess = '';
   end
   error('SPLINES:TPAPS:wrongsizeX', ...
        ['TPAPS(X,...) expects the data sites to form the COLUMNS',...
          ' of X.\nWith that interpretation, you seem to be providing data',...
          ' sites in ', num2str(m),...
          '-dimensional space,\nwhile, at present, TPAPS can only handle',...
          ' data sites in the plane.\n',addmess],0)
end

mp1= m+1;

if nx<mp1
   error('SPLINES:TPAPS:notenoughsites', ...
        ['Thin-plate spline smoothing in ',num2str(m), ...
          ' variables requires at least ',num2str(mp1), ' data sites.'])
end

% convert the values to vectors, but remember the actual size of the values
% in order to set the dimension parameter of the output correctly.
sizeval = size(y);
ny = sizeval(end); sizeval(end) = []; dy = prod(sizeval);
if length(sizeval)>1
   y = reshape(y,dy,ny);
end

if ny~=nx
   if dy==nx, addmess = 'Perhaps you meant to supply the transpose of Y?';
   else  addmess = '';
   end
   error('SPLINES:TPAPS:wrongsizeY', ...
           ['TPAPS(X,Y,...) expects the data values to form the', ...
            ' COLUMNS of Y.\nWith that interpretation, you seem to be' ...
            ' providing ',num2str(ny),' data value(s),\nyet ',num2str(nx),...
            ' data sites.\n',addmess],0)
end

% ignore all nonfinites
nonfinites = find(sum(~isfinite([x;y])));
if ~isempty(nonfinites)
   x(:,nonfinites) = []; y(:,nonfinites) = []; nx = size(x,2);
   warning('SPLINES:TPAPS:NaNs', ...
           'All data points with NaNs or Infs in their value will be ignored.')
end

if nx<mp1
   error('SPLINES:TPAPS:notenoughsites', ...
        ['Thin-plate spline smoothing in ',num2str(m), ...
          ' variables requires at least ',num2str(mp1), ' data sites.'])
end

[Q,R] = qr([ x.' ones(nx,1)]);
radiags = sort(abs(diag(R)));
if radiags(1)<1.e-14*radiags(end)
   error('SPLINES:TPAPS:collinearsites', ...
         'Some nontrivial linear polynomial vanishes at all data sites.')
end

if nx==3 % simply return the interpolating plane
   st = stmak(x,[zeros(dy,3), y/(R(1:mp1,1:mp1).')],'tp00');
   p = 1;

else

   Q1 = Q(:,1:mp1); Q(:,1:mp1) = [];
   if nargin==3&&~isempty(p)&&p==0 % get the linear least squares polynomial:
      st = stmak(x, [zeros(dy,nx), (y*Q1)/(R(1:mp1,1:mp1).')],'tp00');
   elseif nx<729 % we solve the linear system directly:

      colmat = stcol(x,x,'tr');

      if nargin<3||isempty(p) % we must supply the smoothing parameter
         p = 1/(1+mean(diag(Q'*colmat*Q)));
      end

      if p~=1, colmat(1:nx+1:nx^2) = colmat(1:nx+1:nx^2)+(1-p)/p; end
      coefs1 = (y*Q/(Q'*colmat*Q))*Q';
      coefs2 = ((y - coefs1*colmat)*Q1)/(R(1:mp1,1:mp1).');

      st = stmak(x,[coefs1,coefs2],'tp00');

   else      % we use an iterative scheme, to avoid use of out-of-core memory
             % and, for very large problems, perhaps to save execution time

      warning('SPLINES:TPAPS:longjob','This may take a while')

      if nargin<3||isempty(p) % we must supply the smoothing parameter
         ns = 100; % (this estimate seems insensitive to (reasonable) ns)
         xx = x(:,fix(linspace(1,nx,ns)));
         [q,ignored] = qr([ones(ns,1),xx.']); q(:,1:mp1) = [];
         p = 1/(1+mean(diag(q'*stcol(xx,xx,'tr')*q)));
      end

      st0.form = 'st-tp'; st0.centers = x; st0.coefs = []; st0.interv = {[],[]};
      for i=dy:-1:1
         % GMRES(AFUN,B,RESTART,TOL,MAXIT,M1FUN,M2FUN,X0,P1,P2,...)
         % [coefs1(:,i),flag,relres,iter,resvec] = ...
         % ask for the flag output to prevent GMRES from printing a message
         [coefs1(:,i),flag] = gmres(@tppval,(y(i,:)*Q).',10, ...
                    1.e-6*max(abs(y(:))),[],[],[],zeros(nx-3,1), st0,Q,p);
         if flag, warning('SPLINES:TPAPS:nonconvergence', ...
                          'The iteration failed to converge.');
         end
      end
      coefs1 = Q*coefs1;
      coefs2 = ((y - tppval(coefs1,st0,[],p).')*Q1)/(R(1:mp1,1:mp1).');
      st = stmak(x,[coefs1.',coefs2],'tp00');
   end
end
if length(sizeval)>1, st = fnchg(st,'dz',sizeval); end

function vals = tppval(x,st,Q2,p)
%TPPVAL evaluation for iterative solution of thin-plate spline smoothing system

if isempty(Q2)
   st.coefs = x.';
   vals = stval(st,st.centers).';
else
   st.coefs = (Q2*x).';
   vals = (stval(st,st.centers)*Q2).';
end
if p~=1 % TPPVAL is never called when p==0
   vals = vals + x*((1-p)/p);
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -