📄 csape.m
字号:
function pp = csape(x,y,conds,valconds)
%CSAPE Cubic spline interpolation with various end conditions.
%
% PP = CSAPE(X,Y) returns the cubic spline interpolant (in ppform) to the
% given data (X,Y) using Lagrange end conditions (the default in table below).
% The interpolant matches, at the data site X(j), the given data value
% Y(:,j), j=1:length(X). The data values may be scalars, vectors, matrices,
% or even ND-arrays. Data points with the same site are averaged.
% For interpolation to gridded data, see below.
%
% PP = CSAPE(X,Y,CONDS) uses the end conditions specified by CONDS, with
% corresponding end condition values endcondvals .
% If there are two more data values than data sites, then the first (last)
% data value is taken as the value for the left (right) end condition, i.e.,
% endcondvals = Y(:,[1 end]).
% Otherwise, default values are used.
%
% CONDS may be a *string* whose first character matches one of the
% following: 'complete' or 'clamped', 'not-a-knot', 'periodic',
% 'second', 'variational', with the following meanings:
%
% 'complete' : match endslopes (as given, with
% default as under *default*)
% 'not-a-knot' : make spline C^3 across first and last interior
% break (ignoring given end condition values if any)
% 'periodic' : match first and second derivatives at first data
% point with those at last data point
% (ignoring given end condition values if any)
% 'second' : match end second derivatives (as given,
% with default [0 0], i.e., as in variational)
% 'variational' : set end second derivatives equal to zero
% (ignoring given end condition values if any)
% The *default* : match endslopes to the slope of the cubic that
% matches the first four data at the respective end.
%
% By giving CONDS as a 1-by-2 matrix instead, it is possible to
% specify *different* conditions at the two endpoints, namely
% CONDS(i) with value endcondvals(:,i), with i=1 (i=2) referring to the
% left (right) endpoint.
%
% CONDS(i)=j means that the j-th derivative is being specified to
% be endcondvals(:,i) , j=1,2. CONDS(1)=0=CONDS(2) means periodic end
% conditions.
%
% If CONDS(i) is not specified or is different from 0, 1 or 2, then
% the default value for CONDS(i) is 1 and the default value of
% endcondvals(:,i) is taken. If no end condition values are specified,
% then the default value for endcondvals(:,i) is taken to be
%
% deriv. of cubic interpolant to nearest four points, if CONDS(i)=1;
% 0 if CONDS(i)=2.
%
% For backward compatibility, it is also possible to specify endcondvals as
% an optional fourth input argument, but only for univariate data.
%
% It is also possible to handle gridded data, by having X be a cell array
% containing m univariate meshes and, correspondingly, having Y be an
% m-dimensional array (or an (m+length(d))-dimensional array if the function
% is to have values of size d ).
% Correspondingly, CONDS is a cell array with m entries, and,
% consistent with the tensor product procedure used, also the tensor product
% of the univariate end conditions is enforced and must be supplied with
% values; see the example below.
%
% For example,
%
% fnplt(csape( [0:4], [1 0 -1 0 1;0 1 0 -1 0], 'periodic')), axis equal
%
% plots a circle, while
%
% x = linspace(0,2*pi,21); pp = csape( x, [1 sin(x) 0], [1 2] );
%
% gives a good approximation to the sine function on the interval [0 .. 2*pi]
% (matching its slope 1 at the left endpoint, x(1) = 0, and its second
% derivative 0 at the right endpoint, x(21) = 2*pi, in addition to its value
% at every x(i), i=1:21).
%
% As an illustration of the specification of end conditions in a multivariate
% setting, here is complete bicubic interpolation, with the data explicitly
% derived from the bicubic polynomial g(x,y) = x^3y^3, to make it easy for
% you to see exactly where the slopes and slopes of slopes (i.e., cross
% derivatives) must be placed in the data values supplied. Since our g is a
% bicubic polynomial, its interpolant, f , must be g itself. We test this.
%
% sites = {[0 1],[0 2]}; coefs = zeros(4,4); coefs(1,1) = 1;
% g = ppmak(sites,coefs);
% Dxg = fnval(fnder(g,[1 0]),sites);
% Dyg = fnval(fnder(g,[0 1]),sites);
% Dxyg = fnval(fnder(g,[1 1]),sites);
% f = csape(sites,[Dxyg(1,1), Dxg(1,:), Dxyg(1,2); ...
% Dyg(:,1), fnval(g,sites), Dyg(:,2) ; ...
% Dxyg(2,1), Dxg(2,:), Dxyg(2,2)], ...
% {'complete','complete'});
% if any(squeeze(fnbrk(f,'c'))-coefs), 'something went wrong', end
%
% As a multivariate vector-valued example, here is a sphere, done as a
% parametric bicubic spline, using prescribed slopes in one direction and
% periodic end conditions in the other:
%
% x = 0:4; y=-2:2; s2 = 1/sqrt(2);
% clear v
% v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
% v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
% v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
% sph = csape({x,y},v,{'clamped','periodic'});
% values = fnval(sph,{0:.1:4,-2:.1:2});
% surf(squeeze(values(1,:,:)),squeeze(values(2,:,:)),squeeze(values(3,:,:)))
% % the previous two lines could have been replaced by: fnplt(sph)
% axis equal, axis off
%
% See also CSAPI, SPAPI, SPLINE.
% The grandfathered CSAPE calling sequence:
% CSAPE(X,Y,CONDS,VALCONDS) enables the user, in the case of univariate
% data, to specify end condition values VALCONDS, with VALCONDS(:,j) the
% value for the left (j=1) and right (j=2) end condition, respectively.
% Copyright 1987-2003 C. de Boor and The MathWorks, Inc.
% $Revision: 1.23 $
% Generate the cubic spline interpolant in ppform.
if nargin<3, conds = [1 1]; end
if iscell(x) % we are dealing with gridded data
m = length(x);
sizey = size(y);
if length(sizey)<m
error('SPLINES:CSAPE:toofewdims',...
['If X is a cell-array of length m, then Y must have', ...
' at least m dimensions.']), end
if length(sizey)==m, % grid values of a scalar-valued function
if issparse(y), y = full(y); end
sizey = [1 sizey];
end
sizeval = sizey(1:end-m); sizey = [prod(sizeval), sizey(end-m+(1:m))];
y = reshape(y, sizey);
if ~iscell(conds), conds = num2cell(repmat(conds,m,1),2); end
v = y; sizev = sizey;
for i=m:-1:1 % carry out coordinatewise interpolation
[b,v,l,k] = ppbrk(csape1(x{i}, ...
reshape(v,prod(sizev(1:m)),sizev(m+1)),conds{i}));
breaks{i} = b;
sizev(m+1) = l*k; v = reshape(v,sizev);
if m>1
v = permute(v,[1,m+1,2:m]); sizev(2:m+1) = sizev([m+1,2:m]);
end
end
% At this point, V contains the tensor-product pp coefficients;
% It remains to make up the formal description:
pp = ppmak(breaks, v);
if length(sizeval)>1, pp = fnchg(pp,'dz',sizeval); end
else % we are dealing with univariate data
if nargin<4
pp = csape1(x,y,conds);
else
pp = csape1(x,y,conds,valconds);
end
end
function pp = csape1(x,y,conds,valconds)
% Generate the cubic spline interpolant in ppform.
% The fourth argument still permitted here for backward compatibility
[xi,yi,sizeval,endvals] = chckxywp(x,y,0);
if ~isempty(endvals), valconds = endvals.'; end
[yn,yd] = size(yi); dd = ones(1,yd);
dx = diff(xi); divdif = diff(yi)./dx(:,dd);
[n,yd] = size(yi); dd = ones(1,yd);
valsnotgiven=0;
if ~exist('valconds','var'), valsnotgiven=1; valconds = zeros(yd,2); end
if ischar(conds)
if conds(1)=='c', conds = [1 1];
elseif conds(1)=='n', pp = csapi(x,y); return
elseif conds(1)=='p', conds = [0 0];
elseif conds(1)=='s', conds = [2 2];
elseif conds(1)=='v', conds = [2 2]; valconds = zeros(yd,2);
else, error('SPLINES:CSAPE:unknownends',...
['Unknown end condition *',conds,'* specified.'])
end
end
% set up the linear system for solving for the slopes at XI.
dx = diff(xi); divdif = diff(yi)./dx(:,dd);
c = spdiags([ [dx(2:n-1,1);0;0] ...
2*[0;dx(2:n-1,1)+dx(1:n-2,1);0] ...
[0;0;dx(1:n-2,1)] ], [-1 0 1], n, n);
b = zeros(n,yd);
b(2:n-1,:)=3*(dx(2:n-1,dd).*divdif(1:n-2,:)+dx(1:n-2,dd).*divdif(2:n-1,:));
if ~any(conds)
c(1,1)=1; c(1,n)=-1;
elseif conds(1)==2
c(1,1:2)=[2 1]; b(1,:)=3*divdif(1,:)-(dx(1)/2)*valconds(:,1).';
else
c(1,1:2) = [1 0]; b(1,:) = valconds(:,1).';
if (valsnotgiven||conds(1)~=1) % if endslope was not supplied,
% get it by local interpolation
b(1,:)=divdif(1,:);
if n>2, ddf=(divdif(2,:)-divdif(1,:))/(xi(3)-xi(1));
b(1,:) = b(1,:)-ddf*dx(1); end
if n>3, ddf2=(divdif(3,:)-divdif(2,:))/(xi(4)-xi(2));
b(1,:)=b(1,:)+(ddf2-ddf)*(dx(1)*(xi(3)-xi(1)))/(xi(4)-xi(1)); end
end
end
if ~any(conds)
c(n,1:2)=dx(n-1)*[2 1]; c(n,n-1:n)= c(n,n-1:n)+dx(1)*[1 2];
b(n,:) = 3*(dx(n-1)*divdif(1,:) + dx(1)*divdif(n-1,:));
elseif conds(2)==2
c(n,n-1:n)=[1 2]; b(n,:)=3*divdif(n-1,:)+(dx(n-1)/2)*valconds(:,2).';
else
c(n,n-1:n) = [0 1]; b(n,:) = valconds(:,2).';
if (valsnotgiven||conds(2)~=1) % if endslope was not supplied,
% get it by local interpolation
b(n,:)=divdif(n-1,:);
if n>2, ddf=(divdif(n-1,:)-divdif(n-2,:))/(xi(n)-xi(n-2));
b(n,:) = b(n,:)+ddf*dx(n-1); end
if n>3, ddf2=(divdif(n-2,:)-divdif(n-3,:))/(xi(n-1)-xi(n-3));
b(n,:)=b(n,:)+(ddf-ddf2)*(dx(n-1)*(xi(n)-xi(n-2)))/(xi(n)-xi(n-3));
end
end
end
% solve for the slopes .. (protect current spparms setting)
mmdflag = spparms('autommd');
spparms('autommd',0); % suppress pivoting
s=c\b;
spparms('autommd',mmdflag);
% .. and convert to ppform
c4 = (s(1:n-1,:)+s(2:n,:)-2*divdif(1:n-1,:))./dx(:,dd);
c3 = (divdif(1:n-1,:)-s(1:n-1,:))./dx(:,dd) - c4;
pp = ppmak(xi.', ...
reshape([(c4./dx(:,dd)).' c3.' s(1:n-1,:).' yi(1:n-1,:).'],(n-1)*yd,4),yd);
if length(sizeval)>1, pp = fnchg(pp,'dz',sizeval); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -