📄 histodem.m
字号:
%% Histogram approximations
% Copyright 1987-2005 C. de Boor and The MathWorks, Inc.
% $Revision: 1.11.4.2 $ $Date: 2005/06/21 19:44:32 $
%%
% We would like to derive from this histogram a smoother approximation to the
% underlying distribution. We do this by constructing a spline function f
% whose average value over each bar interval equals the height of that bar.
% Here are the two commands that generated the histogram shown:
y = randn(1,5001); hist(y);
%%
% If h is the height of one of these bars, and its left and right edge
% are at L and R, then we want our spline f to satisfy
%
% integral { f(x) : L < x < R }/(R - L) = h ,
%
% or, with F the indefinite integral of f, i.e., DF = f,
%
% F(R) - F(L) = h*(R - L).
[heights,centers] = hist(y);
hold on
set(gca,'XTickLabel',[])
n = length(centers); w = centers(2)-centers(1);
t = linspace(centers(1)-w/2,centers(end)+w/2,n+1);
p = fix(n/2);
fill(t([p p p+1 p+1]),[0 heights([p p]),0],'w')
plot(centers([p p]),[0 heights(p)],'r:')
h = text(centers(p)-.2,heights(p)/2,' h');
dep = -70;tL = text(t(p),dep,'L');
tR = text(t(p+1),dep,'R');
hold off
%%
% So, with t(i) the left edge of the i-th bar, dt(i) its width, and
% h(i) its height, we want
%
% F(t(i+1)) - F(t(i)) = h(i) * dt(i), i=1:n,
%
% or, setting arbitrarily F(t(1)) = 0,
%
% F(t(i)) = sum {h(j)*dt(j) : j=1:i-1}, i=1:n+1.
%
% Add to this the two end conditions DF(t(1)) = 0 = DF(t(n+1)), and we
% have all the data we need to get F as a complete cubic spline
% interpolant, and its derivative, f = DF, is what we want and plot, all
% in one statement.
set(h,'String','h(i)')
set(tL,'String','t(i)')
set(tR,'String','t(i+1)')
dt = diff(t);
hold on
fnplt(fnder(spline(t,[0,cumsum([0,heights.*dt]),0])), 'r',2);
hold off
%%
% Here is an explanation of the one-liner we used:
%
% >> fnplt(fnder(spline(t,[0,cumsum([0,h.*dt]),0])),'r',2)
%
% Fvals = cumsum([0,h.*dt]); % provides the values of F at t
% F = spline( t , [0, Fvals, 0]); % constructs the cubic spline interpolant,
% % with zero endslopes, to these values
% DF = fnder(spline); % computes its first derivative
% fnplt(DF, 'r', 2) % plots DF, in red with linewidth 2
displayEndOfDemoMessage(mfilename)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -