⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fnplt.m

📁 演示matlab曲线拟和与插直的基本方法
💻 M
字号:
function [points,t] = fnplt(f,varargin)
%FNPLT Plot a function.
%
%   FNPLT(F)  plots the function in F on its basic interval.
%
%   FNPLT(F,SYMBOL,INTERV,LINEWIDTH,JUMPS) plots the function F
%   on the specified INTERV = [a,b] (default is the basic interval), 
%   using the specified plotting SYMBOL (default is '-'), 
%   and the specified LINEWIDTH (default is 1), 
%   and using NaNs in order to show any jumps as actual jumps only 
%   in case JUMPS is a string beginning with 'j'.
%
%   The four optional arguments may appear in any order, with INTERV
%   the one of size [1 2], SYMBOL and JUMPS strings, and LINEWIDTH the
%   scalar. Any empty optional argument is ignored.
%
%   If the function in F is 2-vector-valued, the planar curve is
%   plotted.  If the function in F is d-vector-valued with d>2, the
%   space curve given by the first three components of F is plotted.
%
%   If the function is multivariate, it is plotted as a bivariate function,
%   at the midpoint of its basic intervals in additional variables, if any.
%
%   POINTS = FNPLT(F,...)   does not plot, but returns instead the sequence 
%   of 2D-points or 3D-points it would have plotted.
%
%   [POINTS,T] = FNPLT(F,...)  also returns, for a vector-valued F, the 
%   corresponding vector T of parameter values.
%
%   Example:
%      x=linspace(0,2*pi,21); f = spapi(4,x,sin(x));
%      fnplt(f,'r',3,[1 3])
%
%   plots the graph of the function in f, restricted to the interval [1 .. 3],
%   in red, with linewidth 3 .

%   Copyright 1987-2003 C. de Boor and The MathWorks, Inc.
%   $Revision: 1.22 $

% interpret the input:
symbol=''; interv=[]; linewidth=[]; jumps=0;
for j=2:nargin
   arg = varargin{j-1};
   if ~isempty(arg)
      if ischar(arg)
         if arg(1)=='j', jumps = 1;
         else, symbol = arg;
         end
      else
         [ignore,d] = size(arg);
         if ignore~=1
	    error('SPLINES:FNPLT:wrongarg',['arg',num2str(j),' is incorrect.']), end
         if d==1
            linewidth = arg;
         else
            interv = arg;
         end
      end
   end
end

% generate the plotting info:
if ~isstruct(f), f = fn2fm(f); end

% convert ND-valued to equivalent vector-valued:
d = fnbrk(f,'dz'); if length(d)>1, f = fnchg(f,'dim',prod(d)); end

switch f.form(1:2)
case 'st'
   if ~isempty(interv), f = stbrk(f,interv);
   else
      interv = stbrk(f,'interv');
   end
   npoints = 51; d = stbrk(f,'dim');
   switch fnbrk(f,'var')
   case 1
      x = linspace(interv{1}(1),interv{1}(2),npoints);
      v = stval(f,x);
   case 2
      x = {linspace(interv{1}(1),interv{1}(2),npoints), ...
                    linspace(interv{2}(1),interv{2}(2),npoints)};
      [xx,yy] = ndgrid(x{1},x{2});
      v = reshape(stval(f,[xx(:),yy(:)].'),[d,size(xx)]);
   otherwise
      error('SPLINES:FNPLT:atmostbivar', ...
            'Cannot handle st functions with more than 2 variables.')
   end
otherwise
   if ~strcmp(f.form([1 2]),'pp')
      givenform = f.form; f = fn2fm(f,'pp'); basicint = ppbrk(f,'interval');
   end
   
   if ~isempty(interv), f = ppbrk(f,interv); end
      
   [breaks,coefs,l,k,d] = ppbrk(f);
   if iscell(breaks)
      m = length(breaks);
      for i=m:-1:3
         x{i} = (breaks{i}(1)+breaks{i}(end))/2;
      end
      npoints = 51;
      ii = [1]; if m>1, ii = [2 1]; end
      for i=ii
         x{i}= linspace(breaks{i}(1),breaks{i}(end),npoints);
      end
      v = ppual(f,x);
      if exist('basicint','var') 
                         % we converted from B-form to ppform, hence must now
                         % enforce the basic interval for the underlying spline.
         for i=ii
            temp = find(x{i}<basicint{i}(1)|x{i}>basicint{i}(2));
            if d==1
               if ~isempty(temp), v(:,temp,:) = 0; end
               v = permute(v,[2,1]);
            else
               if ~isempty(temp), v(:,:,temp,:) = 0; end
               v = permute(v,[1,3,2]);
            end
         end
      end
   else     % we are dealing with a univariate spline
      npoints = 101;
      x = [breaks(2:l) linspace(breaks(1),breaks(l+1),npoints)];
      v = ppual(f,x); 
      if l>1 % make sure of proper treatment at jumps if so required
         if jumps
            tx = breaks(2:l); temp = repmat(NaN, d,l-1);
         else
            tx = []; temp = zeros(d,0);
         end
         x = [breaks(2:l) tx x]; 
         v = [ppual(f,breaks(2:l),'left') temp v];
      end
      [x,inx] = sort(x); v = v(:,inx);
   
      if exist('basicint','var') 
                         % we converted from B-form to ppform, hence must now
                         % enforce the basic interval for the underlying spline.
                         % Note that only the first d components are set to zero
                         % outside the basic interval, i.e., the (d+1)st 
                         % component of a rational spline is left unaltered :-)
         if jumps, extrap = repmat(NaN,d,1); else, extrap = zeros(d,1); end
         temp = find(x<basicint(1)); ltp = length(temp);
         if ltp
            x = [x(temp),basicint([1 1]), x(ltp+1:end)];
            v = [zeros(d,ltp+1),extrap,v(:,ltp+1:end)];
         end
         temp = find(x>basicint(2)); ltp = length(temp);
         if ltp
            x = [x(1:temp(1)-1),basicint([2 2]),x(temp)];
            v = [v(:,1:temp(1)-1),extrap,zeros(d,ltp+1)];
         end
         %   temp = find(x<basicint(1)|x>basicint(2));
         %   if ~isempty(temp), v(temp) = zeros(d,length(temp)); end
      end
   end
   
   if exist('givenform','var')&&givenform(1)=='r' 
                                           % we are dealing with a rational fn:
                                           % need to divide by last component
      d = d-1;
      sizev = size(v); sizev(1) = d;
      % since fnval will replace any zero value of the denominator by 1,
      % so must we here, for consistency:
      v(d+1,find(v(d+1,:)==0)) = 1;
      v = reshape(v(1:d,:)./repmat(v(d+1,:),d,1),sizev);
   end 
end

%  use the plotting info, to plot or else to output:
if nargout==0
   if iscell(x)
      switch d
      case 1
         [yy,xx] = meshgrid(x{2},x{1});
         surf(xx,yy,reshape(v,length(x{1}),length(x{2})))
      case 2
         v = squeeze(v); roughp = 1+(npoints-1)/5;
         vv = reshape(cat(1,...
              permute(v(:,1:5:npoints,:),[3,2,1]),...
              repmat(NaN,[1,roughp,2]),...
              permute(v(:,:,1:5:npoints),[2,3,1]),...
              repmat(NaN,[1,roughp,2])), ...
                    [2*roughp*(npoints+1),2]);
         plot(vv(:,1),vv(:,2))
      case 3
         v = permute(reshape(v,[3,length(x{1}),length(x{2})]),[2 3 1]);
         surf(v(:,:,1),v(:,:,2),v(:,:,3))
      otherwise
      end
   else
      if isempty(symbol), symbol = '-'; end
      if isempty(linewidth), linewidth = 2; end
      switch d
      case 1, plot(x,v,symbol,'linew',linewidth)
      case 2, plot(v(1,:),v(2,:),symbol,'linew',linewidth)
      otherwise
         plot3(v(1,:),v(2,:),v(3,:),symbol,'linew',linewidth)
      end
   end
else
   if iscell(x)
      switch d
      case 1
         [yy,xx] = meshgrid(x{2},x{1});
         points = {xx,yy,reshape(v,length(x{1}),length(x{2}))};
      case 2
         [yy,xx] = meshgrid(x{2},x{1});
         points = {xx,yy,reshape(v,[2,length(x{1}),length(x{2})])};
      case 3
         points = {squeeze(v(1,:)),squeeze(v(2,:)),squeeze(v(3,:))};
         t = {x{1:2}}
      otherwise
      end
   else
      if d==1, points = [x;v];
      else, t = x; points = v([1:min([d,3])],:); end
   end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -