⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mersennetwister.h

📁 随机数类,产生随机数
💻 H
字号:
// MersenneTwister.h// Mersenne Twister random number generator -- a C++ class MTRand// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus// Richard J. Wagner  v1.0  15 May 2003  rjwagner@writeme.com// The Mersenne Twister is an algorithm for generating random numbers.  It// was designed with consideration of the flaws in various other generators.// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,// are far greater.  The generator is also fast; it avoids multiplication and// division, and it benefits from caches and pipelines.  For more information// see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html// Reference// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,// Copyright (C) 2000 - 2003, Richard J. Wagner// All rights reserved.                          //// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions// are met:////   1. Redistributions of source code must retain the above copyright//      notice, this list of conditions and the following disclaimer.////   2. Redistributions in binary form must reproduce the above copyright//      notice, this list of conditions and the following disclaimer in the//      documentation and/or other materials provided with the distribution.////   3. The names of its contributors may not be used to endorse or promote //      products derived from this software without specific prior written //      permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.// The original code included the following notice:////     When you use this, send an email to: matumoto@math.keio.ac.jp//     with an appropriate reference to your work.//// It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu// when you write.# ifndef MERSENNETWISTER_H# define MERSENNETWISTER_H// Not thread safe (unless auto-initialization is avoided and each thread has// its own MTRand object)# include <iostream># include <climits># include <cstdio># include <ctime># include <cmath>class MTRand {// Datapublic:	typedef unsigned long uint32;  // unsigned integer type, at least 32 bits		enum { N = 624 };       // length of state vector	enum { SAVE = N + 1 };  // length of array for save()protected:	enum { M = 397 };  // period parameter		uint32 state[N];   // internal state	uint32 *pNext;     // next value to get from state	int left;          // number of values left before reload needed//Methodspublic:	MTRand( const uint32& oneSeed );  // initialize with a simple uint32	MTRand( uint32 *const bigSeed, uint32 const seedLength = N );  // or an array	MTRand();  // auto-initialize with /dev/urandom or time() and clock()		// Do NOT use for CRYPTOGRAPHY without securely hashing several returned	// values together, otherwise the generator state can be learned after	// reading 624 consecutive values.		// Access to 32-bit random numbers	double rand();                          // real number in [0,1]	double rand( const double& n );         // real number in [0,n]	double randExc();                       // real number in [0,1)	double randExc( const double& n );      // real number in [0,n)	double randDblExc();                    // real number in (0,1)	double randDblExc( const double& n );   // real number in (0,n)	uint32 randInt();                       // integer in [0,2^32-1]	uint32 randInt( const uint32& n );      // integer in [0,n] for n < 2^32	double operator()() { return rand(); }  // same as rand()		// Access to 53-bit random numbers (capacity of IEEE double precision)	double rand53();  // real number in [0,1)		// Re-seeding functions with same behavior as initializers	void seed( const uint32 oneSeed );	void seed( uint32 *const bigSeed, const uint32 seedLength = N );	void seed();		// Saving and loading generator state	void save( uint32* saveArray ) const;  // to array of size SAVE	void load( uint32 *const loadArray );  // from such array	friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );	friend std::istream& operator>>( std::istream& is, MTRand& mtrand );protected:	void initialize( const uint32 oneSeed );	void reload();	uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }	uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }	uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }	uint32 mixBits( const uint32& u, const uint32& v ) const		{ return hiBit(u) | loBits(v); }	uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const		{ return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }	static uint32 hash( time_t t, clock_t c );};inline MTRand::MTRand( const uint32& oneSeed )	{ seed(oneSeed); }inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )	{ seed(bigSeed,seedLength); }inline MTRand::MTRand()	{ seed(); }inline double MTRand::rand()	{ return double(randInt()) * (1.0/4294967295.0); }inline double MTRand::rand( const double& n )	{ return rand() * n; }inline double MTRand::randExc()	{ return double(randInt()) * (1.0/4294967296.0); }inline double MTRand::randExc( const double& n )	{ return randExc() * n; }inline double MTRand::randDblExc()	{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }inline double MTRand::randDblExc( const double& n )	{ return randDblExc() * n; }inline double MTRand::rand53(){	uint32 a = randInt() >> 5, b = randInt() >> 6;	return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0);  // by Isaku Wada}inline MTRand::uint32 MTRand::randInt(){	// Pull a 32-bit integer from the generator state	// Every other access function simply transforms the numbers extracted here		if( left == 0 ) reload();	--left;			register uint32 s1;	s1 = *pNext++;	s1 ^= (s1 >> 11);	s1 ^= (s1 <<  7) & 0x9d2c5680UL;	s1 ^= (s1 << 15) & 0xefc60000UL;	return ( s1 ^ (s1 >> 18) );}inline MTRand::uint32 MTRand::randInt( const uint32& n ){	// Find which bits are used in n	// Optimized by Magnus Jonsson (magnus@smartelectronix.com)	uint32 used = n;	used |= used >> 1;	used |= used >> 2;	used |= used >> 4;	used |= used >> 8;	used |= used >> 16;		// Draw numbers until one is found in [0,n]	uint32 i;	do		i = randInt() & used;  // toss unused bits to shorten search	while( i > n );	return i;}inline void MTRand::seed( const uint32 oneSeed ){	// Seed the generator with a simple uint32	initialize(oneSeed);	reload();}inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength ){	// Seed the generator with an array of uint32's	// There are 2^19937-1 possible initial states.  This function allows	// all of those to be accessed by providing at least 19937 bits (with a	// default seed length of N = 624 uint32's).  Any bits above the lower 32	// in each element are discarded.	// Just call seed() if you want to get array from /dev/urandom	initialize(19650218UL);	register int i = 1;	register uint32 j = 0;	register int k = ( N > seedLength ? N : seedLength );	for( ; k; --k )	{		state[i] =			state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );		state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;		state[i] &= 0xffffffffUL;		++i;  ++j;		if( i >= N ) { state[0] = state[N-1];  i = 1; }		if( j >= seedLength ) j = 0;	}	for( k = N - 1; k; --k )	{		state[i] =			state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );		state[i] -= i;		state[i] &= 0xffffffffUL;		++i;		if( i >= N ) { state[0] = state[N-1];  i = 1; }	}	state[0] = 0x80000000UL;  // MSB is 1, assuring non-zero initial array	reload();}inline void MTRand::seed(){	// Seed the generator with an array from /dev/urandom if available	// Otherwise use a hash of time() and clock() values		// First try getting an array from /dev/urandom	FILE* urandom = fopen( "/dev/urandom", "rb" );	if( urandom )	{		uint32 bigSeed[N];		register uint32 *s = bigSeed;		register int i = N;		register bool success = true;		while( success && i-- )			success = fread( s++, sizeof(uint32), 1, urandom );		fclose(urandom);		if( success ) { seed( bigSeed, N );  return; }	}		// Was not successful, so use time() and clock() instead	seed( hash( time(NULL), clock() ) );}inline void MTRand::initialize( const uint32 seed ){	// Initialize generator state with seed	// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.	// In previous versions, most significant bits (MSBs) of the seed affect	// only MSBs of the state array.  Modified 9 Jan 2002 by Makoto Matsumoto.	register uint32 *s = state;	register uint32 *r = state;	register int i = 1;	*s++ = seed & 0xffffffffUL;	for( ; i < N; ++i )	{		*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;		r++;	}}inline void MTRand::reload(){	// Generate N new values in state	// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)	register uint32 *p = state;	register int i;	for( i = N - M; i--; ++p )		*p = twist( p[M], p[0], p[1] );	for( i = M; --i; ++p )		*p = twist( p[M-N], p[0], p[1] );	*p = twist( p[M-N], p[0], state[0] );	left = N, pNext = state;}inline MTRand::uint32 MTRand::hash( time_t t, clock_t c ){	// Get a uint32 from t and c	// Better than uint32(x) in case x is floating point in [0,1]	// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)	static uint32 differ = 0;  // guarantee time-based seeds will change	uint32 h1 = 0;	unsigned char *p = (unsigned char *) &t;	for( size_t i = 0; i < sizeof(t); ++i )	{		h1 *= UCHAR_MAX + 2U;		h1 += p[i];	}	uint32 h2 = 0;	p = (unsigned char *) &c;	for( size_t j = 0; j < sizeof(c); ++j )	{		h2 *= UCHAR_MAX + 2U;		h2 += p[j];	}	return ( h1 + differ++ ) ^ h2;}inline void MTRand::save( uint32* saveArray ) const{	register uint32 *sa = saveArray;	register const uint32 *s = state;	register int i = N;	for( ; i--; *sa++ = *s++ ) {}	*sa = left;}inline void MTRand::load( uint32 *const loadArray ){	register uint32 *s = state;	register uint32 *la = loadArray;	register int i = N;	for( ; i--; *s++ = *la++ ) {}	left = *la;	pNext = &state[N-left];}inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand ){	register const MTRand::uint32 *s = mtrand.state;	register int i = mtrand.N;	for( ; i--; os << *s++ << "\t" ) {}	return os << mtrand.left;}inline std::istream& operator>>( std::istream& is, MTRand& mtrand ){	register MTRand::uint32 *s = mtrand.state;	register int i = mtrand.N;	for( ; i--; is >> *s++ ) {}	is >> mtrand.left;	mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];	return is;}#endif  // MERSENNETWISTER_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -