📄 ia64.s
字号:
.explicit.text.ident "ia64.S, Version 2.1".ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"//// ====================================================================// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL// project.//// Rights for redistribution and usage in source and binary forms are// granted according to the OpenSSL license. Warranty of any kind is// disclaimed.// ====================================================================//// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is// different from Itanium to this module viewpoint. Most notably, is it// "wider" than Itanium? Can you experience loop scalability as// discussed in commentary sections? Not really:-( Itanium2 has 6// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to// spin twice as fast, as I need 8 IALU ports. Amount of floating point// ports is the same, i.e. 2, while I need 4. In other words, to this// module Itanium2 remains effectively as "wide" as Itanium. Yet it's// essentially different in respect to this module, and a re-tune was// required. Well, because some intruction latencies has changed. Most// noticeably those intensively used://// Itanium Itanium2// ldf8 9 6 L2 hit// ld8 2 1 L1 hit// getf 2 5// xma[->getf] 7[+1] 4[+0]// add[->st8] 1[+1] 1[+0]//// What does it mean? You might ratiocinate that the original code// should run just faster... Because sum of latencies is smaller...// Wrong! Note that getf latency increased. This means that if a loop is// scheduled for lower latency (as they were), then it will suffer from// stall condition and the code will therefore turn anti-scalable, e.g.// original bn_mul_words spun at 5*n or 2.5 times slower than expected// on Itanium2! What to do? Reschedule loops for Itanium2? But then// Itanium would exhibit anti-scalability. So I've chosen to reschedule// for worst latency for every instruction aiming for best *all-round*// performance. // Q. How much faster does it get?// A. Here is the output from 'openssl speed rsa dsa' for vanilla// 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat// Linux 7.1 2.96-81)://// sign verify sign/s verify/s// rsa 512 bits 0.0036s 0.0003s 275.3 2999.2// rsa 1024 bits 0.0203s 0.0011s 49.3 894.1// rsa 2048 bits 0.1331s 0.0040s 7.5 250.9// rsa 4096 bits 0.9270s 0.0147s 1.1 68.1// sign verify sign/s verify/s// dsa 512 bits 0.0035s 0.0043s 288.3 234.8// dsa 1024 bits 0.0111s 0.0135s 90.0 74.2//// And here is similar output but for this assembler// implementation:-)//// sign verify sign/s verify/s// rsa 512 bits 0.0021s 0.0001s 549.4 9638.5// rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1// rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3// rsa 4096 bits 0.1295s 0.0018s 7.7 561.5// sign verify sign/s verify/s// dsa 512 bits 0.0012s 0.0013s 891.9 756.6// dsa 1024 bits 0.0023s 0.0028s 440.4 376.2// // Yes, you may argue that it's not fair comparison as it's// possible to craft the C implementation with BN_UMULT_HIGH// inline assembler macro. But of course! Here is the output// with the macro://// sign verify sign/s verify/s// rsa 512 bits 0.0020s 0.0002s 495.0 6561.0// rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7// rsa 2048 bits 0.0519s 0.0015s 19.3 667.3// rsa 4096 bits 0.3464s 0.0053s 2.9 187.7// sign verify sign/s verify/s// dsa 512 bits 0.0016s 0.0020s 613.1 510.5// dsa 1024 bits 0.0045s 0.0054s 221.0 183.9//// My code is still way faster, huh:-) And I believe that even// higher performance can be achieved. Note that as keys get// longer, performance gain is larger. Why? According to the// profiler there is another player in the field, namely// BN_from_montgomery consuming larger and larger portion of CPU// time as keysize decreases. I therefore consider putting effort// to assembler implementation of the following routine://// void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)// {// int i,j;// BN_ULONG v;//// for (i=0; i<nl; i++)// {// v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);// nrp++;// rp++;// if (((nrp[-1]+=v)&BN_MASK2) < v)// for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;// }// }//// It might as well be beneficial to implement even combaX// variants, as it appears as it can literally unleash the// performance (see comment section to bn_mul_comba8 below).//// And finally for your reference the output for 0.9.6a compiled// with SGIcc version 0.01.0-12 (keep in mind that for the moment// of this writing it's not possible to convince SGIcc to use// BN_UMULT_HIGH inline assembler macro, yet the code is fast,// i.e. for a compiler generated one:-)://// sign verify sign/s verify/s// rsa 512 bits 0.0022s 0.0002s 452.7 5894.3// rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9// rsa 2048 bits 0.0578s 0.0017s 17.3 600.2// rsa 4096 bits 0.3838s 0.0061s 2.6 164.5// sign verify sign/s verify/s// dsa 512 bits 0.0018s 0.0022s 547.3 459.6// dsa 1024 bits 0.0051s 0.0062s 196.6 161.3//// Oh! Benchmarks were performed on 733MHz Lion-class Itanium// system running Redhat Linux 7.1 (very special thanks to Ray// McCaffity of Williams Communications for providing an account).//// Q. What's the heck with 'rum 1<<5' at the end of every function?// A. Well, by clearing the "upper FP registers written" bit of the// User Mask I want to excuse the kernel from preserving upper// (f32-f128) FP register bank over process context switch, thus// minimizing bus bandwidth consumption during the switch (i.e.// after PKI opration completes and the program is off doing// something else like bulk symmetric encryption). Having said// this, I also want to point out that it might be good idea// to compile the whole toolkit (as well as majority of the// programs for that matter) with -mfixed-range=f32-f127 command// line option. No, it doesn't prevent the compiler from writing// to upper bank, but at least discourages to do so. If you don't// like the idea you have the option to compile the module with// -Drum=nop.m in command line.//#if defined(_HPUX_SOURCE) && !defined(_LP64)#define ADDP addp4#else#define ADDP add#endif#if 1//// bn_[add|sub]_words routines.//// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the// data reside in L1 cache, i.e. 2 ticks away). It's possible to// compress the epilogue and get down to 2*n+6, but at the cost of// scalability (the neat feature of this implementation is that it// shall automagically spin in n+5 on "wider" IA-64 implementations:-)// I consider that the epilogue is short enough as it is to trade tiny// performance loss on Itanium for scalability.//// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)//.global bn_add_words#.proc bn_add_words#.align 64.skip 32 // makes the loop body aligned at 64-byte boundarybn_add_words: .prologue .fframe 0 .save ar.pfs,r2{ .mii; alloc r2=ar.pfs,4,12,0,16 cmp4.le p6,p0=r35,r0 };;{ .mfb; mov r8=r0 // return value(p6) br.ret.spnt.many b0 };; .save ar.lc,r3{ .mib; sub r10=r35,r0,1 mov r3=ar.lc brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 } .body{ .mib; ADDP r14=0,r32 // rp mov r9=pr };;{ .mii; ADDP r15=0,r33 // ap mov ar.lc=r10 mov ar.ec=6 }{ .mib; ADDP r16=0,r34 // bp mov pr.rot=1<<16 };;.L_bn_add_words_ctop:{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) (p18) add r39=r37,r34 (p19) cmp.ltu.unc p56,p0=r40,r38 }{ .mfb; (p0) nop.m 0x0 (p0) nop.f 0x0 (p0) nop.b 0x0 }{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) (p58) cmp.eq.or p57,p0=-1,r41 // (p20) (p58) add r41=1,r41 } // (p20){ .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r (p0) nop.f 0x0 br.ctop.sptk .L_bn_add_words_ctop };;.L_bn_add_words_cend:{ .mii;(p59) add r8=1,r8 // return value mov pr=r9,0x1ffff mov ar.lc=r3 }{ .mbb; nop.b 0x0 br.ret.sptk.many b0 };;.endp bn_add_words#//// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)//.global bn_sub_words#.proc bn_sub_words#.align 64.skip 32 // makes the loop body aligned at 64-byte boundarybn_sub_words: .prologue .fframe 0 .save ar.pfs,r2{ .mii; alloc r2=ar.pfs,4,12,0,16 cmp4.le p6,p0=r35,r0 };;{ .mfb; mov r8=r0 // return value(p6) br.ret.spnt.many b0 };; .save ar.lc,r3{ .mib; sub r10=r35,r0,1 mov r3=ar.lc brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 } .body{ .mib; ADDP r14=0,r32 // rp mov r9=pr };;{ .mii; ADDP r15=0,r33 // ap mov ar.lc=r10 mov ar.ec=6 }{ .mib; ADDP r16=0,r34 // bp mov pr.rot=1<<16 };;.L_bn_sub_words_ctop:{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) (p18) sub r39=r37,r34 (p19) cmp.gtu.unc p56,p0=r40,r38 }{ .mfb; (p0) nop.m 0x0 (p0) nop.f 0x0 (p0) nop.b 0x0 }{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) (p58) cmp.eq.or p57,p0=0,r41 // (p20) (p58) add r41=-1,r41 } // (p20){ .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r (p0) nop.b 0x0 br.ctop.sptk .L_bn_sub_words_ctop };;.L_bn_sub_words_cend:{ .mii;(p59) add r8=1,r8 // return value mov pr=r9,0x1ffff mov ar.lc=r3 }{ .mbb; nop.b 0x0 br.ret.sptk.many b0 };;.endp bn_sub_words##endif#if 0#define XMA_TEMPTATION#endif#if 1//// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)//.global bn_mul_words#.proc bn_mul_words#.align 64.skip 32 // makes the loop body aligned at 64-byte boundarybn_mul_words: .prologue .fframe 0 .save ar.pfs,r2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -