⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nbtheory.cpp

📁 300种加密解密的算法源代码
💻 CPP
📖 第 1 页 / 共 2 页
字号:
		while (!success)
		{
			p.Randomize(rng, I, I2, Integer::ANY);
			p *= q; p <<= 1; ++p;
			if (!TrialDivision(p, trialDivisorBound))
			{
				a.Randomize(rng, 2, p-1, Integer::ANY);
				b = a_exp_b_mod_c(a, (p-1)/q, p);
				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
			}
		}
	}
	return p;
}

Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
{
	// isn't operator overloading great?
	return p * (u * (xq-xp) % q) + xp;
}

Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q)
{
	return CRT(xp, p, xq, q, EuclideanMultiplicativeInverse(p, q));
}

Integer ModularSquareRoot(const Integer &a, const Integer &p)
{
	if (p%4 == 3)
		return a_exp_b_mod_c(a, (p+1)/4, p);

	Integer q=p-1;
	unsigned int r=0;
	while (q.IsEven())
	{
		r++;
		q >>= 1;
	}

	Integer n=2;
	while (Jacobi(n, p) != -1)
		++n;

	Integer y = a_exp_b_mod_c(n, q, p);
	Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
	Integer b = (x.Squared()%p)*a%p;
	x = a*x%p;
	Integer tempb, t;

	while (b != 1)
	{
		unsigned m=0;
		tempb = b;
		do
		{
			m++;
			b = b.Squared()%p;
			if (m==r)
				return Integer::Zero();
		}
		while (b != 1);

		t = y;
		for (unsigned i=0; i<r-m-1; i++)
			t = t.Squared()%p;
		y = t.Squared()%p;
		r = m;
		x = x*t%p;
		b = tempb*y%p;
	}

	assert(x.Squared()%p == a);
	return x;
}

Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
					const Integer &p, const Integer &q, const Integer &u)
{
	Integer p2 = ModularExponentiation((a % p), dp, p);
	Integer q2 = ModularExponentiation((a % q), dq, q);
	return CRT(p2, p, q2, q, u);
}

Integer ModularRoot(const Integer &a, const Integer &e,
					const Integer &p, const Integer &q)
{
	Integer dp = EuclideanMultiplicativeInverse(e, p-1);
	Integer dq = EuclideanMultiplicativeInverse(e, q-1);
	Integer u = EuclideanMultiplicativeInverse(p, q);
	assert(!!dp && !!dq && !!u);
	return ModularRoot(a, dp, dq, p, q, u);
}

/*
Integer GCDI(const Integer &x, const Integer &y)
{
	Integer a=x, b=y;
	unsigned k=0;

	assert(!!a && !!b);

	while (a[0]==0 && b[0]==0)
	{
		a >>= 1;
		b >>= 1;
		k++;
	}

	while (a[0]==0)
		a >>= 1;

	while (b[0]==0)
		b >>= 1;

	while (1)
	{
		switch (a.Compare(b))
		{
			case -1:
				b -= a;
				while (b[0]==0)
					b >>= 1;
				break;

			case 0:
				return (a <<= k);

			case 1:
				a -= b;
				while (a[0]==0)
					a >>= 1;
				break;

			default:
				assert(false);
		}
	}
}

Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
{
	assert(b.Positive());

	if (a.Negative())
		return EuclideanMultiplicativeInverse(a%b, b);

	if (b[0]==0)
	{
		if (!b || a[0]==0)
			return Integer::Zero();       // no inverse
		if (a==1)
			return 1;
		Integer u = EuclideanMultiplicativeInverse(b, a);
		if (!u)
			return Integer::Zero();       // no inverse
		else
			return (b*(a-u)+1)/a;
	}

	Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;

	if (a[0])
	{
		t1 = Integer::Zero();
		t3 = -b;
	}
	else
	{
		t1 = b2;
		t3 = a>>1;
	}

	while (!!t3)
	{
		while (t3[0]==0)
		{
			t3 >>= 1;
			if (t1[0]==0)
				t1 >>= 1;
			else
			{
				t1 >>= 1;
				t1 += b2;
			}
		}
		if (t3.Positive())
		{
			u = t1;
			d = t3;
		}
		else
		{
			v1 = b-t1;
			v3 = -t3;
		}
		t1 = u-v1;
		t3 = d-v3;
		if (t1.Negative())
			t1 += b;
	}
	if (d==1)
		return u;
	else
		return Integer::Zero();   // no inverse
}
*/

int Jacobi(const Integer &aIn, const Integer &bIn)
{
	assert(bIn.IsOdd());

	Integer b = bIn, a = aIn%bIn;
	int result = 1;

	while (!!a)
	{
		unsigned i=0;
		while (a.GetBit(i)==0)
			i++;
		a>>=i;

		if (i%2==1 && (b%8==3 || b%8==5))
			result = -result;

		if (a%4==3 && b%4==3)
			result = -result;

		std::swap(a, b);
		a %= b;
	}

	return (b==1) ? result : 0;
}

Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
{
	unsigned i = e.BitCount();
	if (i==0)
		return 2;

	MontgomeryRepresentation m(n);
	Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(2);
	Integer v=p, v1=m.Subtract(m.Square(p), two);

	i--;
	while (i--)
	{
		if (e.GetBit(i))
		{
			// v = (v*v1 - p) % m;
			v = m.Subtract(m.Multiply(v,v1), p);
			// v1 = (v1*v1 - 2) % m;
			v1 = m.Subtract(m.Square(v1), two);
		}
		else
		{
			// v1 = (v*v1 - p) % m;
			v1 = m.Subtract(m.Multiply(v,v1), p);
			// v = (v*v - 2) % m;
			v = m.Subtract(m.Square(v), two);
		}
	}
	return m.ConvertOut(v);
}

// This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
// The total number of multiplies and squares used is less than the binary
// algorithm (see above).  Unfortunately I can't get it to run as fast as
// the binary algorithm because of the extra overhead.
/*
Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
{
	if (!n)
		return 2;

#define f(A, B, C)	m.Subtract(m.Multiply(A, B), C)
#define X2(A) m.Subtract(m.Square(A), two)
#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))

	MontgomeryRepresentation m(modulus);
	Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
	Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;

	while (d!=1)
	{
		p = d;
		unsigned int b = WORD_BITS * p.WordCount();
		Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
		r = (p*alpha)>>b;
		e = d-r;
		B = A;
		C = two;
		d = r;

		while (d!=e)
		{
			if (d<e)
			{
				swap(d, e);
				swap(A, B);
			}

			unsigned int dm2 = d[0], em2 = e[0];
			unsigned int dm3 = d%3, em3 = e%3;

//			if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
			if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
			{
				// #1
//				t = (d+d-e)/3;
//				t = d; t += d; t -= e; t /= 3;
//				e = (e+e-d)/3;
//				e += e; e -= d; e /= 3;
//				d = t;

//				t = (d+e)/3
				t = d; t += e; t /= 3;
				e -= t;
				d -= t;

				T = f(A, B, C);
				U = f(T, A, B);
				B = f(T, B, A);
				A = U;
				continue;
			}

//			if (dm6 == em6 && d <= e + (e>>2))
			if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
			{
				// #2
//				d = (d-e)>>1;
				d -= e; d >>= 1;
				B = f(A, B, C);
				A = X2(A);
				continue;
			}

//			if (d <= (e<<2))
			if (d <= (t = e, t <<= 2))
			{
				// #3
				d -= e;
				C = f(A, B, C);
				swap(B, C);
				continue;
			}

			if (dm2 == em2)
			{
				// #4
//				d = (d-e)>>1;
				d -= e; d >>= 1;
				B = f(A, B, C);
				A = X2(A);
				continue;
			}

			if (dm2 == 0)
			{
				// #5
				d >>= 1;
				C = f(A, C, B);
				A = X2(A);
				continue;
			}

			if (dm3 == 0)
			{
				// #6
//				d = d/3 - e;
				d /= 3; d -= e;
				T = X2(A);
				C = f(T, f(A, B, C), C);
				swap(B, C);
				A = f(T, A, A);
				continue;
			}

			if (dm3+em3==0 || dm3+em3==3)
			{
				// #7
//				d = (d-e-e)/3;
				d -= e; d -= e; d /= 3;
				T = f(A, B, C);
				B = f(T, A, B);
				A = X3(A);
				continue;
			}

			if (dm3 == em3)
			{
				// #8
//				d = (d-e)/3;
				d -= e; d /= 3;
				T = f(A, B, C);
				C = f(A, C, B);
				B = T;
				A = X3(A);
				continue;
			}

			assert(em2 == 0);
			// #9
			e >>= 1;
			C = f(C, B, A);
			B = X2(B);
		}

		A = f(A, B, C);
	}

#undef f
#undef X2
#undef X3

	return m.ConvertOut(A);
}
*/

Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
{
	Integer d = (m*m-4);
	Integer p2 = p-Jacobi(d,p);
	Integer q2 = q-Jacobi(d,q);
	return CRT(Lucas(EuclideanMultiplicativeInverse(e,p2), m, p), p, Lucas(EuclideanMultiplicativeInverse(e,q2), m, q), q, u);
}

Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q)
{
	return InverseLucas(e, m, p, q, EuclideanMultiplicativeInverse(p, q));
}

unsigned int FactoringWorkFactor(unsigned int n)
{
	// extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
	// updated to reflect the factoring of RSA-130
	if (n<5) return 0;
	else return (unsigned int)(2.4 * pow(n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}

unsigned int DiscreteLogWorkFactor(unsigned int n)
{
	// assuming discrete log takes about the same time as factoring
	if (n<5) return 0;
	else return (unsigned int)(2.4 * pow(n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}

// ********************************************************

// generate a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is also prime
// warning: this is slow!
PrimeAndGenerator::PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits)
{
	// no prime exists for delta = -1 and pbits = 5
	assert(pbits > 5);

	Integer minP = Integer::Power2(pbits-1);
	Integer maxP = Integer::Power2(pbits) - 1;
	bool success = false;

	while (!success)
	{
		p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
		PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);

		while (sieve.NextCandidate(p))
		{
			assert(IsSmallPrime(p) || SmallDivisorsTest(p));
			q = (p-delta) >> 1;
			assert(IsSmallPrime(p) || SmallDivisorsTest(q));
			if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
			{
				success = true;
				break;
			}
		}
	}

	if (delta == 1)
	{
		// find g such that g is a quadratic residue mod p, then g has order q
		// g=4 always works, but this way we get the smallest quadratic residue (other than 1)
		for (g=2; Jacobi(g, p) != 1; ++g);
	}
	else
	{
		assert(delta == -1);
		// find g such that g*g-4 is a quadratic non-residue, 
		// and such that g has order q
		for (g=3; ; ++g)
			if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
				break;
	}
}

// generate a random prime p of the form 2*r*q+delta, where q is also prime
PrimeAndGenerator::PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
{
	// no prime exists for delta = -1, qbits = 4, and pbits = 5
	assert(qbits > 4);
	assert(pbits > qbits);

	Integer minQ = Integer::Power2(qbits-1);
	Integer maxQ = Integer::Power2(qbits) - 1;
	Integer minP = Integer::Power2(pbits-1);
	Integer maxP = Integer::Power2(pbits) - 1;

	do
	{
		q.Randomize(rng, minQ, maxQ, Integer::PRIME);
	} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));

	// find a random g of order q
	if (delta==1)
	{
		do
		{
			Integer h(rng, 2, p-2, Integer::ANY);
			g = a_exp_b_mod_c(h, (p-1)/q, p);
		} while (g <= 1);
		assert(a_exp_b_mod_c(g, q, p)==1);
	}
	else
	{
		assert(delta==-1);
		do
		{
			Integer h(rng, 3, p-1, Integer::ANY);
			if (Jacobi(h*h-4, p)==1)
				continue;
			g = Lucas((p+1)/q, h, p);
		} while (g <= 2);
		assert(Lucas(q, g, p) == 2);
	}
}

NAMESPACE_END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -